
&

Leveraging LSTMs for interference-aware run-time system
Predictability of ML cloud workloads
Dimosthenis Masouros, Sotirios Xydis, Dimitrios Soudris
Microprocessors and Digital Systems Laboratory, ECE, National Technical University of Athens, Greece
{demo.masouros, sxydis, dsoudris}@microlab.ntua.gr

Rapid increment in the number 

of workloads uploaded and 

executed on the Cloud

These workloads are co-located
on the same physical server 

machines causing interference
to each other

1. The Problem
2. State-of-the-art approaches

How to efficiently place and control workloads on a DC environment?

Predict workload performance slowdown or tail-latency 

due to interference in a static one-off way [1, 2].

BUT
they fail to model the impact of each resource on the 

performance degradation 

recent advancements in the system-level management of 

hardware allow fine-grained resource tuning
Power Capping [3], Cache Allocation [4], Resources usage (cgroups)

3. Motivation & Proposed Solution

Applications experience 

different phases
throughout their lifetime

Runtime schedulers should 

dynamically predict per 

application resource needs 
under interference to 

proactively control resources on the 
system  

Leverage Long Short-Term 
Memory (LSTM) networks to

predict runtime system 
metrics under interference

4. Proposed Framework

0

1

2

3

4

5

0 20 40 60 80 100 120 140

C
o
re

 L
L
C

 M
is
se

s
(M

)

AdaBoost

RFR

Lasso

o Applications from scikit-learn[5] and cloudsuite[6] 

as our target workloads
o Emulate interference using the ibench suite [7]

oMonitor system using Performance Counter 

Monitoring (PCM) tool [8] and collect system 
metrics.

o Train LSTM model to predict future values of  desired 
metrics (IPC, LLC misses, Energy Consumption)

Random
Interference

[7] S
ys

te
m

Socket 0 Socket 1

PCM [8]

Core metrics Socket metrics System metrics

N
or

m
al
iz

at
io
n

K
ee

p 
co

rr
el

at
ed

 
se

rie
s 

(P
ea

rs
on

)

C
ro

ss
 

co
rr

el
a
ti
on

Core L2M

Core L3M

System L3M

LSTM LSTM LSTM

Target
Workload

[5,6]

Target
prediction metric
(L3M/IPC/NRG)

References
[1] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware sched-
uling for heterogeneous datacenters. InACM SIGPLAN Notices, Vol. 48. ACM,77–88
[2] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, 
andChristos Kozyrakis. 2015.  Heracles: Improving resource efficiency at scale. 
InACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450–462.
[3] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and 
ChristianLe. 2010. RAPL: memory power estimation and capping. InProceedings of 
the 16thACM/IEEE international symposium on Low power electronics and design. 
ACM,189–194.
[4] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris 
Gianos,Ronak Singhal, and Ravi Iyer. 2016. Cache QoS: From concept to reality in 
the Intel®Xeon®processor E5-2600 v3 product family. InHigh Performance 
ComputerArchitecture (HPCA), 2016 IEEE International Symposium on. IEEE, 657–
668.
[5] Fabian  Pedregosa,  Gaël Varoquaux,  Alexandre  Gramfort,  Vincent  
Michel,Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron 
Weiss,Vincent Dubourg, and others. 2011.  Scikit-learn: Machine learning in 
Python.Journal of machine learning research12, Oct (2011), 2825–2830.
[6] M.  Ferdman,  A.  Adileh,  O.  Kocberber,  S.  Volos,  M.  Alisafaee,D. Jevdjic, C. 
Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,“Clearing  the  clouds:  A  study  
of  emerging  scale-out  workloadson modern  hardware,”Proceedings of  the  
Seventeenth  InternationalConference on  Architectural  Support  for  
Programming  Languages  andOperating Systems, 2012.
[7] Processor   Counter   Monitor   (PCM).   [Online].   Available:   
https://github.com/opcm/pcm

7. Evaluation

Offline Part
> Workload execution with different interference
> Collect system metrics
> Design Space Exploration & Training

Online Part
o Monitor workload during execution and predict 

future values of system metrics

5. Experimental Setup

6. Design Space Exploration
Q1: What metrics to choose 

as inputs to the LSTM?
Q2: How far back to seek 
for valuable information?

A1: Calculate the pearson
correlation between all 

signals and select the two 
most correlated

0

10

20

30

40

0 500 1000

C
ro

ss
 C

o
rr

el
te

d
 V

al
u
e

L3 Cache misses

L2 Cache misses

A2: Calculate the cross correlation of 
pearson correlated signals and select 

a proper value

Q3: How many layers and features to 
use in the LSTM network?

A3: Explore the impact of different design 
parameters on the accuracy of the model.

Overall Best 
Architecture

4 Layers
128 Features
150 training 

epochs 

0

0,2

0,4

0,6

0,8

1

2 5 50 10
0

15
0

16 32 6
4

12
8

51
2 1 2 4 8

Epochs LSTM Features LSTM Layers

R
2

sc
o
re

0,92
0,94
0,96
0,98

1

L3M IPC NRG

High predictability of system-level 
metrics under interference, achieving on 

average 

𝑹𝟐 = 𝟎. 𝟗𝟖𝟕

0

3

6

9

0 3 6 9

NRG

P
re

d
ic

te
d

Real
0

2

4

6

0 1 2 3 4 5 6

L3M

P
re

d
ic

te
d

Real
0

1

2

3

4

0 1 2 3 4

IPC

P
re

d
ic

te
d

Real

Ada
Lasso

LDA RFR
LR RFC

SGDR
SGDC

Data Serving
Data Caching

InMemAnalytics
MediaStreaming

WebSearch
WebServing

High Level of accuracy for all the three 
target prediction variables

This work has been partially funded by EU Horizon 2020 programme under grant agreement No 801015 EXA2PRO (https://exa2pro.eu/).

https://exa2pro.eu/

