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Rapid increment in the number 

of workloads uploaded and 

executed on the Cloud

These workloads are co-located
on the same physical server 

machines causing interference
to each other

1. The Problem
2. State-of-the-art approaches

How to efficiently place and control workloads on a DC environment?

Predict workload performance slowdown or tail-latency 

due to interference in a static one-off way [1, 2].

BUT
they fail to model the impact of each resource on the 

performance degradation 

recent advancements in the system-level management of 

hardware allow fine-grained resource tuning
Power Capping [3], Cache Allocation [4], Resources usage (cgroups)

3. Motivation & Proposed Solution

Applications experience 

different phases
throughout their lifetime

Runtime schedulers should 

dynamically predict per 

application resource needs 
under interference to 

proactively control resources on the 
system  

Leverage Long Short-Term 
Memory (LSTM) networks to

predict runtime system 
metrics under interference

4. Proposed Framework
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o Applications from scikit-learn[5] and cloudsuite[6] 

as our target workloads
o Emulate interference using the ibench suite [7]

oMonitor system using Performance Counter 

Monitoring (PCM) tool [8] and collect system 
metrics.

o Train LSTM model to predict future values of  desired 
metrics (IPC, LLC misses, Energy Consumption)
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7. Evaluation

Offline Part
> Workload execution with different interference
> Collect system metrics
> Design Space Exploration & Training

Online Part
o Monitor workload during execution and predict 

future values of system metrics

5. Experimental Setup

6. Design Space Exploration
Q1: What metrics to choose 

as inputs to the LSTM?
Q2: How far back to seek 
for valuable information?

A1: Calculate the pearson
correlation between all 

signals and select the two 
most correlated
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A2: Calculate the cross correlation of 
pearson correlated signals and select 

a proper value

Q3: How many layers and features to 
use in the LSTM network?

A3: Explore the impact of different design 
parameters on the accuracy of the model.

Overall Best 
Architecture
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High predictability of system-level 
metrics under interference, achieving on 

average 

𝑹𝟐 = 𝟎. 𝟗𝟖𝟕
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High Level of accuracy for all the three 
target prediction variables
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