
Bitwise Reproducible Execution of Unstructured Mesh
Applications

Bálint Siklósi
3in Research Group

Faculty of Information Technology and Bionics
Pazmany Peter Catholic University,

Esztergom, Hungary
siklosi.balint@itk.ppke.hu

István Z Reguly
Faculty of Information Technology and Bionics

Pazmany Peter Catholic University,
Budapest, Hungary

Gihan Mudalige
Department of Computer Science

University of Warwick
Coventry, United Kingdom

Abstract
Engineering applications use floating point arithmetic which are not associative according to the IEEE spec-

ifications. In a parallel environment, this usually means the application becomes unreproducible due to the non-
deterministic ordering of operations. In this paper we present work on generating a method for unstructured mesh
applications to provide bitwise reproducibility between separate runs, even if they are started with different number
of MPI processes. We implement our work in the OP2 domain-specific library, which provides an API that abstracts
the solution of unstructured mesh computations, and demonstrate how the whole process can be automated without
intervention from the user. We carry out the performance analysis of our method applied to two applications: a
simple finite volume application, and a more complex finite element code that uses a conjugate-gradient solver. We
show a 2.37× to 1.49× slowdown on these applications as a price for full bitwise reproducibility.

Introduction
• Problem:

– IEEE-754 standard for floating point representation
– Correct behaviour, but comes with roundings. → non-associativity
– The order of calculations, usually relaxed in a parallel environment, affects the results

• Motivation:
– In some industries exact reproducibility is very important, due to regulatory requirements

* aircraft turbine design
* algorithmic trading

• Other solutions:
– ReproBLAS project’s binned representation [1]→ 5n to 9n floating point operations overhead
– Lulesh→ only for boundary/halo values

• Our solution:
– Reproducible ordering for indirect increments
– Reproducible reductions
– Reproducibility even when running on different numbers of MPI processes

The OP2 domain specific language
The OP2 (Oxford Parallel library for Unstructured mesh solvers) project is developing an open-source
framework for the execution of unstructured grid applications on clusters of GPUs or multi-core
CPUs.

1 /* ----- elemental kernel function in res.h ------*/
2 void res(const double *edge,
3 double *cell0, double *cell1 ){
4 //Computations, such as:
5 cell0 += *edge; *cell1 += *edge;
6 }
7 /* ---------- in the main program file -----------*/
8 // Declaring the mesh with OP2 sets
9 op_set edges = op_decl_set(numedge, "edges");

10 op_set cells = op_decl_set(numcell, "cells");
11 // mppings -connectivity between sets
12 op_map edge2cell = op_decl_map(edges, cells,
13 2, etoc_mapdata,"edge2cell");
14 // data on sets
15 op_dat p_edge = op_decl_dat(edges,
16 1,"double",edata,"p_edge");
17 op_dat p_cell = op_decl_dat(cells,
18 4,"double",cdata,"p_cell");
19 // OP2 parallel loop declaration
20 op_par_loop(res,"res", edges,
21 op_arg_dat(p_edge,-1,OP_ID ,4,"double",OP_READ),
22 op_arg_dat(p_cell, 0,edge2cell,4,"double",OP_INC ),
23 op_arg_dat(p_cell, 1,edge2cell,4,"double",OP_INC));

Figure 1: Specification of an OP2 parallel loop

Reproducible indirect increments
On Figure 2 two example incrementing orders can be seen on a single cell, by executing through
the edges set by using an edge to cells mapping. Since the associative laws of algebra do not
necessarily hold for floating-point numbers, cell0 = e0 + e1 + e2 + e3 6= cell0 = e1 + e3 + e0 + e2.
This situation might happen over MPI, when OP2’s partition algorithm produces different local IDs
for every elements. Thus we had to implement a fixed execution order into OP2, to solve this issue.
Our method consists of two main parts:
• OP2 needs to determine a consistent fixed ordering
• The code automatically generated for the application needs to use this order

Figure 2: Example orders of incrementing a cell in airfoil.

Or solution can be seen at [2]. Our main idea is to swap the execution of the elements. From iter-
ating through edges and increment cells, we iterate through cells and ask for increments from each
edges with a fixed global order and apply those on the cell. This idea can be seen on Figure 3.

Figure 3: Swapped structure of execution.

Obviously in implementation, this produces
some overheads in computational time and
memory usage. All edges are executed as
they were executed originally, but their re-
sults are stored in a temporary array. After
that an extra loop must be executed to collect
all the local increments.

This method works with other type of map-
pings, not just with edges to cells.

An other difficulty of combining repro-
ducibility with MPI is reducing into a sin-
gle variable. To solve this issue, we intro-
duce again a temporary storage for all local
increments, and then we use ReploBLAS’s
double binned structure which can apply
all increments reproducibly.

Results
Our results are tested on the ARCHER supercomputer on two mini-applications: (1) Airfoil, a stan-
dard finite volume CFD benchmark code and (2) Aero, a finite element 2D nonlinear steady potential
flow simulation. Both meshes contain 2880000 nodes and 5757200 edges.

0

20

40

60

80

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192 procs

To
ta

l r
un

tim
e 

(s
)

Reproducible Airfoil Original Airfoil

(a)

0

20

40

60

80

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192 procs

To
ta

l r
un

tim
e 

(s
)

Reproducible Aero Original Aero

(b)

Figure 4: Measured full runtimes of the (a) Airfoil and the (b) Aero applications.
On the Airfoil, there is an average of 2.37× slowdown, and a 1.49× on the Aero.

0

1

2

3

4

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192 procs

M
PI

 ti
m

e 
(s

)

Reproducible Airfoil Original Airfoil

(a)

0
0.5

1
1.5

2

1 node - 24 procs 2 node - 48 procs 4 node - 96 procs 8 node - 192
procs

M
PI

 ti
m

e 
(s

)

Reproducible Aero Original Aero

(b)

Figure 5: Measured MPI runtimes of the (a) Airfoil and the (b) Aero applications.
On the Airfoil, there is an average of 2.14× slowdown, and a 1.37× on the Aero.

As it was expected, reproducibility comes with a significant slowdown effect due to the extra mem-
ory movement involved, although if the application is computationally more intensive then the run-
time difference decreases. In terms of bandwidth, there is a 1.4× decrease measured on the Airfoil
application, due to increased irregularity in memory accesses.

Forthcoming Research
Future work involves extending this method to OpenMP and CUDA. During this work, a new type of
problem came up. If a kernel is not just incrementing a variable, but reads and rewrites it, then the
kernel call from one edge must be executed, not just the increment temporarily stored. This problem
needs a solution to be able to really execute the kernel calls in a predefined fixed order. Solving this
issue, we already introduced a simple model: if we can create a coloring for all executed elements
which satisfies the property at equation 1 for all types of partition, then executing the elements used
by those colours we can achieve full reproducibility.

∀i ∈ V, ∀j, k ∈ V |(i, j) ∈ E, (i, k) ∈ E : j < k → color[(i, j)] < color[(i, k)] (1)

References
[1] James Demmel, Peter Ahrens, and Hong Diep Nguyen. Efficient reproducible floating point sum-

mation and blas. Technical Report UCB/EECS-2016-121, EECS Department, University of Cali-
fornia, Berkeley, Jun 2016.

[2] OP-DSL: The Oxford Parallel Domain Specific Languages, 2015. https://op-dsl.
github.io.

Acknowledgements
Project no. PD 124905 has been imple-
mented with the support provided from the
National Research, Development and Inno-
vation Fund of Hungary, financed under
the PD 17 funding scheme. The research
has been supported by the European Union,
co-financed by the European Social Fund
(EFOP-3.6.2-16-2017-00013, Thematic Fun-
damental Research Collaborations Ground-
ing Innovation in Informatics and Infocom-
munications) and by the Thematic Excel-
lence Program of the Hungarian Ministry for
Innovation and Technology.

https://op-dsl.github.io
https://op-dsl.github.io

