
Towards a Heterogeneous data-centric framework for efficient Linear algebra

Petros Anastasiadis†, Georgios Goumas†

†CSLab, School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Towards a Heterogeneous data-centric framework for efficient Linear algebra

Petros Anastasiadis†, Georgios Goumas†

†CSLab, School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Introduction

•BLAS(Basic Linear Algebra Subprograms) is extensively used in scientific code.

•The existing highly optimized vendor BLAS libraries target only their architectures.

•BLAS currently requires high programming effort to utilize heterogeneous architectures.

Previous Work on Heterogeneous BLAS

• System/architecture/software dependant.

• Is either purely theoretical or uses problem-specific low portability optimizations.

•Makes serious assumptions for the data (e.g. location, availability, tiling method).

•Uses task based workload distribution fit for specific system characteristics.

Approach Coverage System Implement. Perf. Model Tiling

Qilin[1] BLAS 1-3 Single-GPU CUDA+TBB Empirical 1-dim
Tomov[2] LAPACK Single-GPU CUBLAS No Square
Werkhoven[3] 1-dim kernel Single-GPU CUDA Semi-empirical 1-dim
cuBLASXT[4] BLAS 3 Multi-GPU CUDA (close) No Square
BLASX[5] BLAS 3 Multi-GPU CUDA No Square

Proposed High Level BLAS Framework

A framework that implements hybrid BLAS routines with:

•An unmodified backwards-compatible BLAS API.

•The integration of existing BLAS libraries for computation.

•Efficient tiling/splitting methods for data distribution on heterogeneous components.

•A lightweight prediction model ensuring near-optimal hybrid performance.

•A high level structure which will allow contributing to the framework easier.

Prediction Model

High-level Framework

BLAS call

Offline training

Library Deployment

Compile on
system with

available BLAS

Unit
distribution

Wrapped
BLAS libs

System metrics

Heterogeneous
system resources

Sub-kernel
Comm/comp

overlap

System capabilites

Unit Spliting

Input metrics

Data
Exec. unit 1 Exec. unit X...

Output

User

Sub-kernel
size

Figure 1: Required components of the proposed Data-centric Framework.

Proposed Prediction Model

We use a semi-empirical model approach since BLAS performance characteristics vary
greatly for different architectures/routines/underlying library optimizations:

•Execution units (ex) are heterogeneous components which can operate on data.

·Units are independent and support heterogeneous parallel execution.

·Each unit is assigned a sub-set of the initial problem called unit work set (WSex).

•Data Links (dl) are the available connections between units used to transfer data.

•Each work set can be further split in equal data chunks called Sub-kernels (SKex).

· Sub-kernels are used for unit-link wise comm/comp overlap.

• In a heterogeneous system with x units the total time of a program is modeled as such:

ttotal = max(t1(WS1, SK1), t2(WS2, SK2), ...tx(WSx, SKx)) (1)

tx(WSx, SKx) ≈ tsend first(SKx) +
WSx

SKx
tover(SKx) + trecv last(SKx) (2)

tover(SKx) ≈ max(tsend(SKx), texec(SKx), trecv(SKx)) (3)

tsend(SKx) = tdl(SKx,memx,memsrc), trecv(SKx) = tdl(SKx,memdest,memx) (4)

tdl(SKx, to, from) ≈ latdl + Gdl ∗ bytesSKx, Gdl =
1

bwdl
(5)

Model Evaluation

•We evaluate the model (1) applied to BLAS DGEMM on two systems:

· System 1: Xeon Gold-5120 (28 cores), Link ≈ 13GB/s, 1 GTX1060.

· System 2: Intel i7-4820K (8 cores), Link ≈ 3.2GB/s, 1 TeslaK40.

•Link latdl, bwdl (5) estimated with 2-value sampling (LogP equivalent [3]).

• Sub-kernel CPU/GPU execution time from (3) estimated with lsq linear regression:

·Train set: ≈ 1000 samples of sizes between 1K and 6K for M,N,K.

•Validation sets: 4 different M,N,K classes (fig. 2) with varying tested WSx, SKx.

Sys. 1

Val set S1 S2 S3 S4

Max err(%) 13.75 21.88 2.50 14.32
Min err(%) -3.69 -3.14 -3.65 -3.86
Mean abs err(%) 4.18 2.14 1.71 4.45

Sys. 2

Val set S1 S2 S3 S4

Max err(%) 30.12 17.81 8.96 18.46
Min err(%) -20.69 -6.0 -3.44 -27.3
Mean abs err(%) 6.1 3.42 1.91 5.64

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

200 400 600 800 1000

20
0

40
0

60
0

80
0

10
00

Predicted (Gflops/s)

O
bs

er
ve

d
(G

flo
ps

/s
)

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

S1: GEMM M=N=K=4K
S2: GEMM M=N=K=8K
S3: GEMM M=N=K=16K
S4: GEMM M=N=4K,K=32K
+/−10% error
+/−20% error

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●

●

●
●

●
●

●●●
●
●●●

●
●●

●

●
●●

●

●

200 400 600 800 1000 1200 1400

20
0

40
0

60
0

80
0

10
00

12
00

14
00

Predicted (Gflops/s)

O
bs

er
ve

d
(G

flo
ps

/s
)

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●●●

●

●

●

●

●

●

●

●
●

●

●
● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

S1: GEMM M=N=K=4K
S2: GEMM M=N=K=8K
S3: GEMM M=N=K=16K
S4: GEMM M=N=4K,K=32K
+/−10% error
+/−20% error

Figure 2: Observed vs Predicted values for the Sub-Kernel model for the execution time of GEMM. The model uses two units
(unit 1 = CPU, unit 2 = GPU), with the assumption that the input/output resides on host (SK1 = 0).

•Low mean percentile error for both systems, acceptable min/max errors.

•Min/Max errors appear in low-performance areas -> less important for optimization.

•Predictions for sys. 2 scattered since low bwdl increases the performance impact of SK2.

Preliminary Results

SpMV CSR on system 1.

adaptive.m
tx

cage15.m
tx

Hook_149
8.mtx

dielFilterV
2real.mtx

Matrix Name

0

5

10

15

20

25

30

Gf
lo
ps
/s

CPU Intel MKL
GPU cuSPARSE
CPU/GPU-naive hyb
CPU/GPU-proposed

GEMM on system 2.

M=N=K=4
000

M=N=K=8
000

M=N=K=1
6000

M=4000,N
=4000,K=

32000

Matrix size (Col major layout)

0

200

400

600

800

1000

1200

Gf
lo
ps
/s

CPU Intel MKL
GPU CUBLAS
CPU/GPU-naive hyb
cublasXT
CPU/GPU-proposed

Figure 3: Performance comparison with vendor libraries. The CPU/GPU-Naive version is a wrapped parallel execution of
vendor routines with the WSx predicted with our model without sub-kernel tiling (SKx = 0). The CPU/GPU-subkernel version
uses the same wrapped vendor routines for execution and CUDA streams for data tiling and comm/comp overlap, with WSx, SKx

estimated with bound L-BFGS on eq. (1).

Future Remarks

•Our model provides good insight on heterogeneous execution time.

·Can be used for efficiently predicting WSx, SKx with curve fitting methods.

·Requires empirical tuning and its accuracy depends greatly on the tover(SKx) formula.

•Data tiling implementation still needs optimization/further research.

•BLAS Wrapper must be able to support more heterogeneous systems/paradigms.

References

[1] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. “Qilin: Exploiting Parallelism on Heterogeneous Mul-
tiprocessors with Adaptive Mapping”. In: Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. 2009.

[2] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. “Towards dense linear algebra for hybrid GPU
accelerated manycore systems”. In: Parallel Computing 36.5 (2010).

[3] B. v. Werkhoven et al. “Performance Models for CPU-GPU Data Transfers”. In: 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. May 2014.

[4] Nvidia. CublasXT.

[5] Linnan Wang et al. “BLASX: A High Performance Level-3 BLAS Library for Heterogeneous Multi-GPU
Computing”. In: Proceedings of the 2016 International Conference on Supercomputing. ICS ’16.

