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Introduction Model Evaluation

LAS(Basic Linear Algebra Subprograms) is extensively used in scientific code. o We evaluate the model (1) applied to BLAS DGEMM on two systems:
he existing highly optimized vendor BLAS libraries target only their architectures. .System 1: Xeon Gold-5120 (28 cores), Link ~ 13GB/s, 1 GTX1060.

LAS currently requires high programming effort to utilize heterogeneous architectures. .System 2: Intel i7-4820K (8 cores), Link ~ 3.2GB/s, 1 TeslaK40.
e Link laty, bwy (5) estimated with 2-value sampling (LogP equivalent [3]).

e Sub-kernel CPU/GPU execution time from (3) estimated with Isq linear regression:
Previous Work on Heterogeneous BLAS - Train set: =~ 1000 samples of sizes between 1K and 6K for M, N K.

e Validation sets: 4 different M,N K classes (fig. 2) with varying tested W.S,., SK,.

e System /architecture/software dependant.

. : . - . Val set S1 | S2 | S3 | sS4 Val set S1 | S2 | S3 | s4
e [s either purely theoretical or uses problem-specific low portability optimizations. i i

. . | o - Sys. 1 Maxen(%) 13.75|21.88 | 2.50 | 14.32 Sys. 2 Maxen(%) 30.12 | 17.81 8.96 | 18.46

e Makes serious assumptions for the data (e.g. location, availability, tiling method). Min err(%) -3.69 | -3.14 |-3.65 | -3.86 Min err(%) -20.69| -6.0 |-3.44 | -27.3

Mean abs err(%) | 4.18 | 2.14 | 1.71 | 4.45 Mean abs err(%)| 6.1 | 3.42 | 1.91 | 5.64

e Uses task based workload distribution fit for specific system characteristics.
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Proposed High Level BLAS Framework
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A framework that implements hybrid BLAS routines with:
e An unmodified backwards-compatible BLAS API.

e The integration of existing BLAS libraries for computation.

Figure 2: Observed vs Predicted values for the Sub-Kernel model for the execution time of GEMM. The model uses two units
(unit 1 = CPU, unit 2 = GPU), with the assumption that the input/output resides on host (SK; = 0).

e Low mean percentile error for both systems, acceptable min/max errors.

e Efficient tiling/splitting methods for data distribution on heterogeneous components. e Min/Max errors appear in low-performance areas -> less important for optimization.

o A lightweight prediction model ensuring near-optimal hybrid performance.

e Predictions for sys. 2 scattered since low bw,; increases the performance impact of S K.

e A high level structure which will allow contributing to the framework easier.
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High-level Framework Figure 3: Performance comparison with vendor libraries. The CPU/GPU-Naive version is a wrapped parallel execution of
vendor routines with the W.S, predicted with our model without sub-kernel tiling (SK, = 0). The CPU/GPU-subkernel version
uses the same wrapped vendor routines for execution and CUDA streams for data tiling and comm /comp overlap, with WS, SK,
estimated with bound L-BFGS on eq. (1).
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Figure 1: Required components of the proposed Data-centric Framework.

Proposed Prediction Model Future Remarks

We use a semi-empirical model approach since BLAS performance characteristics vary e Our model provides good insight on heterogeneous execution time.
greatly for different architectures/routines/underlying library optimizations: . Can be used for efficiently predicting WS,., SK, with curve fitting methods.

: : . - Requires empirical tuning and its accuracy depends greatly on the t,,¢,-(SK,) formula.
¢ Execution units (ex) are heterogeneous components which can operate on data.

: , e Data tiling implementation still needs optimization /further research.
- Units are independent and support heterogeneous parallel execution. & b X /

- Each unit is assigned a sub-set of the initial problem called unit work set (W.S,,). e BLAS Wrapper must be able to support more heterogeneous systems/paradigms.

e Data Links (dl) are the available connections between units used to transfer data.

e Each work set can be further split in equal data chunks called Sub-kernels (SK.,). References
- Sub-kernels are used for unit-link wise comm /comp overlap.

e In a heterogeneous system with z units the total time of a program is modeled as such: 1] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. “Qilin: Exploiting Parallelism on Heterogeneous Mul-
tiprocessors with Adaptive Mapping”. In: Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. 2009.

tiotal = max(t; (WS, SKy), to(W Sy, SKs), ..t,(WS,, SK,))

tx(WSxa SKx) ~ tsend_first(SKx) | ‘g/[?xtover(SKx) + trecv_last(SKx)

tover(SKa:) ~ ma:E(tsend(SKaz)a tea:ec(SKx)a trecv(SKx))

tsend(SK:I;) — tdl(SKxa Mem,, memsrc)a trecv(SKx) — tdl(SKma MEMdest, memm)

1
tdl(SKxa to, fTOm) ~ laty + Gg * bytessi,, Gag = b—
W
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