
ComPar: Optimized Compiler for Automatic OpenMP Source-to-Source
Parallelization using Code Segmentation and Hyperparameters Tuning
Idan Mosseri[1,3], Re’em Harel[2,4], Lee-or Alon[2,3], Reuven Regev Farag[5], Gilad Guralnik[5],
Yoni Cohen[5], May Hagbi[5], Shlomi Tofahi[5], Yoel Vaizman[5], and Gal Oren*[1,3]

Introduction
● Parallelization is essential to exploit the full benefits of multi-core architectures

● Designing valid parallelization for applications is not always a simple nor cheap task

● Automatic parallelization source-to-source (S2S) compilers were proposed to ease
this process, while keeping the code readable for the user

● Each compiler has its pros and cons. We wish to enjoy the best of every compiler

[4] Department of Physics, Bar-Ilan University, IL52900, Ramat-Gan, Israe.
[5] Department of software engineering, Sami Shamoon College of Engineering, P.O.B. 950, Be’er Sheva, Israel
* Corresponding Author

Acknowledgments: This work was supported by the Lynn and William Frankel Center for Computer Science. Computational support was provided by the NegevHPC project.

[1] Department of Physics, Nuclear Research Center - Negev, P.O.B. 9001, Be'er-Sheva, Israel
[2] Israel Atomic Energy Commission, P.O.B. 7061, Tel Aviv, Israel
[3] Department of Computer Science, Ben-Gurion University of the Negev, P.O.B. 653, Be'er Sheva, Israel

There is NO Best Compiler
We compare AutoPar, Par4All and Cetus on different exemplary tests, each test
emphasizing a different parallel shared memory management pitfall

Feature AutoPar (ROSE) Par4All (PIPS) Cetus

Loop unrolling No Yes Yes

Supported languages C, C++ C, Fortran, CUDA C

"No-aliasing" option Yes Yes Yes

Check alias dependence No Yes Yes

Reduction clauses Yes Yes Yes

Array reduction/privatization No No Yes

Nested loops Yes No Yes

Function side effect Annotation required Yes Yes

OOP compatible Yes No No

Development status Yes No Yes

ComPar - Fusion of Optimizations
Each compiler has its advantages and disadvantages (as can be seen from our
performance analysis). “Wisly” fusing the compilers’ output while further optimizing their
performances, should produce superior results

In order to achieve the above objective, we designed and built a new parallelization
framework called ComPar, which is based on current S2S automatic parallelizers

● ComPar adapts the automated parallelism scheme according to the performances of
a collection of representative runs, over varying hardware. Automatically choosing the
preferred parallelization scheme for each loop individually

● ComPar automatically chooses different scheduling methods, chunk sizes,
thread-affinity strategies, thread-placement options, number of threads and so forth

Performance Analysis

Conclusion & Future Directions
• As we assumed, ComPar’s results show that it is possible to increase the speedup

by combining several compilers with a mixture of compilation flags and environment
parameters

• All compilers are effective to some extent, some more than others
• We hope to increase the performances by adding more compilers in the future
• In order to minimize the amount of runs we will implement several search

optimizations that could reduce the amount of combinations executed
• Using Machine Learning models we hope to learn the best hyperparameters for

each specific hardware and further narrow down the search phase

Combinations Table: parameters used in our tests

PolyBench Running-time [sec]: Absolute running-times are also important as the tasks grow expensive

PolyBench Benchmarks

PolyBench Speedup: ComPar shows consistent improvement

NAS Running-times [sec]: Absolute running-times are also important as the tasks grow expensive

NAS Parallel Benchmarks

NAS Speedups: ComPar shows consistent improvement

Compiler Flags

autopar
--keep_going, --enable_modeling, --no_aliasing,

--unique_indirect_index
par4all -O, --fine-grain, --com-optimization, --no-pointer-aliasing

cetus
-parallelize-loops=[1, 2], -reduction=[0, 2],

-privatize=[0, 2], -alias=[1, 3]
OMP Directive

Clauses
schedule dynamic, static (2, 4, 8, 16, 32)

OMP Runtime
Library Routines

omp_set_num_threads 2, 4, 8, 16, 32

ComPar Architecture
ComPar workflow is composed of the following components:

• Combinator creates all possible combinations of compilers and flags

• Fragmentor finds and enumerates all loops in the input source code

• Timer adds timing code around previously enumerated loops

• Parallelizer creates a parallel code for each compiler and compilation flag combination

• Executor runs the combinations on available compute nodes

• Optimal code generator fuses fastest code fragments, creating ComPar output

• DB holds all combinations, metadata and runtime information

ComPar is under development in Python3 with OOP methodology, supports C source code
and uses MongoDB database and Python Flask framework frontend.

Matrix Multiplication Problem

Speedup with different problem sizesRuntime with different problem sizes

Combinator

Fragmentor Timer

Executor

Optimal code
generator d

AutoPar

Par4All

Cetus

Other Tools

ParallelizerParameters json

Input code

Combinations

Code with loop
enumeration

Code with loop
enumeration and timing

Parallel codes with loop
enumeration and timing

Runtimes

DB
Optimal

parallel code

Execution
complete signal

ComPar architecture diagram

To show that each S2S parallelization compiler has it’s advantages and disadvantages,
and how ComPar overcomes them, We tested ComPar’s performance against said
compilers on Numerical Aerodynamics Simulations (NAS) and PolyBench benchmarks.
ComPar always achieved the best speedups, or at least the same ones as the best S2S
compiler (which is different for each benchmark)

