
We show how to accelerate Quicksilver – a Monte Carlo proxy app on state-of-the-
art multicores and obtain 1.8x speedup compared to its original implementation [1]

Accelerating Quicksilver – a Monte Carlo Proxy App

on Multicores

Jesmin Jahan Tithi, Xing Liu*, Fabrizio Petrini (jesmin.jahan.tithi@intel, xing.research@gmail, Fabrizio.Petrini@intel).com

Parallel Computing Labs, Intel Corporation, Santa Clara, CA, USA

References

[1] D. F. Richard and, R. C. Bleile and P. S. Brantley, S. A. Dawson and M. S. McKinley
and M. J. OBrien, Quicksilver: A Proxy App for the Monte Carlo Transport Code
Mercury, IEEE International Conference on Cluster Computing, 2017.

find_isotope_and_reaction is the most
time consuming part
▪ finds isotope & reaction id for a particle
▪ uses nested for loops with break to
linearly search in Nuclear data
▪ six levels of indirections to access cross-
section data

Abstract

Quicksilver and Its Relevance

❑A proxy app representing Mercury Monte Carlo particle transport
simulator used in Lawrence Livermore National Laboratory, USA

❑ Tracks particles moving through a polyhedral domain of material
- decomposed into domains, meshes, cells, facets, …

❑Replicates the control divergence, memory access & communication
patterns of Mercury

❑Lessons learned in optimizing Quicksilver have direct implications for Mercury

❑Quicksilver is being used in novel architecture co-design efforts

❑ Performance of Quicksilver influences hardware procurements at DOE

Challenges - Hard to Parallelize Efficiently

❑Complex and irregular kernels with multiple execution paths
▪ In Mercury, execution flow can reach 100K lines of code

❑Control flow is dominated by branching

❑Performance is dominated by latency bound look-ups, branch divergence

❑Uses arrays of structures, requires multiple-levels of indirections for look-up

❑Accesses multi-GB data randomly or using non-unit strides
▪ difficult to cache or coalesce

❑Low vectorization opportunities

❑GPUs provide little performance advantage
▪ 35% when one branch is dominating, but slow when branches taken equally

Performance of original implementation shows minimal benefits of using GPU

Source: [1]

Function % Time Taken

collision_event 54%

segment_outcome 42%

Intel® Advisor Shows Optimization Targets

Optimizations

▪ Function inlining, scalar replacement, common sub-expression and dead-code
elimination in segment outcome and collision event

▪ Improvements from above optimizations: 5-7% (maximum)

Other optimizations in collision_event and segment_outcome

Platform used: Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz,
Number of threads: 56, Number of cores: 56, Number of sockets: 2, turbo boost: on

Compiler: Intel(R) 64, Version: 19.0.2.187 Build 20190117

Input: Coral2_P1_1.inp, 163840 particles, 16x16x16 mesh, 100 time steps

Performance of full application run (Speedup)

Performance of full application run (Scaling)

Experimental Results

Algorithm and data structure optimizations in collision_event

Optimizations
▪ Find isotope & reaction ids using binary search instead of linear search
▪ Reduces search time from O(n) to O(logn): n=O (isotopes x reactions)

Requires
▪ Copy content of Nuclear data for materials into a contiguous TABLE
▪ Prefix-sum collision probabilities into a contiguous TABLE
▪ Use binary search to search isotope and reaction ids, instead of a linear search

Benefits
▪ Reduction in computational cost from linear to logarithmic
▪ Compacts frequently accessed data -> fits data in cache and improves access

Performance in terms of
segments per sec:

The higher the better
Original

Optimized with restructuring,
hand-tuning, better atomics,

and Binary Search

Segments per sec 1.05E+06 1.92E+06

Speedup wrt original 1 1.83x

Acknowledgements

Thanks to the lead developer of Quicksilver. David Richard for his help

Future Direction

❑ Exploration of other optimization techniques – event-based Particle tracking,
selective data privatization to reduce numa-overheads, etc

❑ Mapping to special-purpose accelerators

0.5

1.0

2.0

4.0

8.0

16.0

32.0

1 4 16 64

S
P

E
E

D
U

P
 W

R
T

O
R

IG
IN

A
L

 O
N

 1

C
O

R
E

#THREADS

STRONG SCALING

Binary search Original

Two most time consuming modules are
segment_outcome and collision_event
These are our optimization targets

How Does Quicksilver Work?

❑Tracks a particle from its beginning to end in one pass - history-based approach

Pseudocode

Absorbed Scattered FissionParticles in a Grid

Particles go through
three types of collisions

For each particle in parallel

Find the next most likely event that
particle will go through

Execute selected event and repeat

Collision

Cross Facet

Reach Census

❑ Quicksilver is a throughput scaling
problem
▪ uses MPI to weak scale across ranks

and OpenMP to strong scale inside
an MPI rank

❑ Improvement inside a single MPI rank
which may occupy a single socket (28
cores) or sub-socket (e.g., 2 ranks each
using 14 cores) should be faithfully
replicated across ranks during
throughput scaling

❑ Thus, the algorithmic improvement
shown in this work is valuable at scale

Event Breakdown Speedup (P100 GPU vs POWER8) original code
Collision Dominated 1.35x

Facet Dominated 1.32x
Balanced 0.56x

* Xing Liu has left Intel. His contribution to this work happened while he was at Intel.

