Accelerating Quicksilver —a Monte Carlo Proxy App

SHAPING

ISC on Multicores intel

High Performance

Jesmin Jahan Tithi, Xing Liu*, Fabrizio Petrini (Jesmin.jahan.tithi@intel, xing.research@gmail, Fabrizio.Petrini@intel).com

Parallel Computing Labs, Intel Corporation, Santa Clara, CA, USA

Abstract

We show how to accelerate Quicksilver - a Monte Carlo proxy app on state-of-the-
art multicores and obtain 1.8x speedup compared to its original implementation [1]

Optimizations

Algorithm and data structure optimizations in collision_event

- - collision event(...){
QU|CkS| IVer and ItS Relevan CE find isotope and reaction(...) find_isotope_and_reaction is the most
_ _anda_ _ pe_ _
nOut = compute_collision_produce(...)time Consuming part

A proxy app representing Mercury Monte Carlo particle transport if (nOut > 1)

* finds isotope & reaction id for a particle

simulator used in Lawrence Livermore National Laboratory, USA add extra particle(...) .
if (nOut==1){ * uses nested for loops with break to
O Tracks particles moving through a polyhedral domain of material find new energy group(...) linearly search in Nuclear data
- decomposed into domains, meshes, cells, facets, ... update original particle(...) » six levels of indirections to access cross-

J section data

d Replicates the control divergence, memory access & communication

Optimizations
patterns of Mercury * Find isotope & reaction ids using binary search instead of linear search
 Lessons learned in optimizing Quicksilver have direct implications for Mercury " Reduces search time from O(n) to O(logn): n=0 (isotopes x reactions)
d Quicksilver is being used in novel architecture co-design efforts Requires
= (Copy content of Nuclear data for materials into a contiguous TABLE
1 Performance of Quicksilver influences hardware procurements at DOE = Prefix-sum collision probabilities into a contiguous TABLE

» Use binary search to search isotope and reaction ids, instead of a linear search

Challenges - Hard to Parallelize Efficiently Benefits

Iq\ =
dComplex and irregular kernels with multiple execution paths 6@“ Reduction in computational cost from linear to logarithmic
» In Mercury, execution flow can reach 100K lines of code = Compacts frequently accessed data -> fits data in cache and improves access

[Control flow is dominated by branching Other optimizations in collision_event and segment_outcome

dPerformance is dominated by latency bound look-ups, branch divergence

* Function inlining, scalar replacement, common sub-expression and dead-code

QUses arrays of structures, requires multiple-levels of indirections for look-up elimination in segment outcome and collision event

QAccesses multi-GB data randomly or using non-unit strides " Improvements from above optimizations: 5-7% (maximum)

= difficult to cache or coalesce EX p eri m ental ReS U ItS

dLow vectorization opportunities _
Platform used: Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz,

GPUs provide little performance advantage Number of threads: 56, Number of cores: 56, Number of sockets: 2, turbo boost: on

* 35% when one branch is dominating, but slow when branches taken equally
Compiler: Intel(R) 64, Version: 19.0.2.187 Build 20190117

Collision Dominated 1.35% Input: Coral2_P1_1.inp, 163840 particles, 16x16x16 mesh, 100 time steps

Facet Dominated 1.32x
Balanced 0.56% Source: [1]

Performance of original implementation shows minimal benefits of using GPU

. Performance of full application run (Speedup)

. = 7
How Does Quicksilver Work” Segments per sec L OSE+06 1.92E+06

A Tracks a particle from its beginning to end in one pass - history-based approach Speedup wrt original 1 1.83x

Collision Performance of full application run (Scaling)

For each particle in parallel

Sl ting n(.axt m(_)st gy GiEns e Cross Facet STRONG SCALING J Quicksilver is a throughput scaling
partice will o through ~Binary search —Original problem
Reach Census 32.0 * uses MPI to weak scale across ranks
‘; and OpenMP to strong scale inside
. . . = an MPI rank
Particlesin a Grid Absorbed ~ Scattered Fission = 16.0
Particles oo throush = : > 1 Improvement inside a single MPI rank
three t gs of colligsions T — —= L:.'J 8.0 which may occupy a single socket (28
yp g § 4.0 cores) or sub-socket (e.g., 2 ranks each
E S ' using 14 cores) should be faithfully
Pseudocode > 2.0 replicated across ranks during
o throughput scaling
cycle tracking(...){ :
ouicksilver(...) | gfm; ?ll particles { a 1.0 Thus, the algorithmic improvement
//pre-processing and initialization //select segment with the shortest distance g 05 1 4 16 64 shown in this work is valuable at scale
CYE]_E init {(...){ segmentOutcome=segment outcome(...) .
— - //executed selected event and update tallies #THREADS
source particles _
. ;f(segment@utcome == facet) {
perform population control facet crossing event(...)
initialize tallies increment tallies . .
|) Future Direction
if (segmentOutcome == collision) {
//core—kernel, particle tracking collision event(...)
cycle_tracking(...){ } rperement tallies O Exploration of other optimization techniques - event-based Particle tracking,
track each particle in parallel i £ (segmentOutcome == census) { selective data privatization to reduce numa-overheads, etc
| é census event(...) _ _
//post-processing increment tallies 1 Mapping to special-purpose accelerators
cYclE—finalizE (... ; while ('absorbed or
reduce all tallies lincensus or
} || pimeenm Acknowledgements
)
} Thanks to the lead developer of Quicksilver. David Richard for his help
Intel® Advisor Shows Optimization Targets References
Two most time consuming modules are |1] D. E. Richard and, R. C. Bleile and P. S. Brantley, S. A. Dawson and M. S. McKinley
segment_outcome and collision_event collision_event 54% and M.]. OBrien, Quicksilver: A Proxy App for the Monte Carlo Transport Code
These are our optimization targets segment_outcome 4.2 9%, Mercury, IEEE International Conference on Cluster Computing, 2017.

* Xing Liu has left Intel. His contribution to this work happened while he was at Intel.

