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Abstract

Dense LU factorization takes O(N 3) time.
The Block Low Rank matrix format reduces the
computation time to O(N 2) and storage cost to
O(N 1.5). This work compares a task-based dis-
tributed Block Low Rank LU factorization against
various distributed dense matrix LU factorization
implementations.

Block Low Rank (BLR) matrix

The Block Low Rank (BLR) matrix allows ex-
pressing a large dense matrix as a collection of low
rank and dense blocks. Fig. 1 shows a BLR ma-
trix with diagonal dense blocks and off-diagonal low
rank blocks.
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Figure 1: Large block dense matrix as a BLR matrix.

LU Factorization

The LU factorization splits a dense matrix into
lower and upper triangular matrices.
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Figure 2: Dense matrix LU factorization.

Blockwise LU factorization
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Figure 3: Block LU factorization.

Fig. 3 shows that an LU factorization can calcu-
lated by dividing a large matrix into blocks
and performing operations per block (also called
’kernels’).
• Factor A00 = L00U00.
• Compute A10 = A10U

−1
00 and A01 = L−1

00 A01.
• Reduce A11 = A11 − A10A01.
• Factor A11 = L11U11.

Runtime-Based Systems: starPU

A runtime system such as starPU expresses a com-
putation as a flow of tasks and overlaps com-
putation and communication. Each kernel of the
blockwise LU can be expressed as a task. StarPU
executes this graph, inserts asynchronous com-
munication between tasks and runs independent
tasks in parallel.
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Figure 4: Computation expressed as tasks and edges in a run
time system. Same colored nodes are executed together.

Distributed low rank LU problems

Lack of computational intensity combined with
irregular size of tasksmakes it hard to correctly to
optimize distributed low rank LU factorization. This
leads to several problems, as shown in Fig. 5.
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Figure 5: Trade-offs for low rank distributed LU factorization.

The problem of load balance can be solved with the
use of run time systems.

Multi-Node Strong Scaling

Comparison of various dense LU factorization imple-
mentations against task-based BLR LU factorization.
Executed using single thread on a varying num-
ber of nodes. N=32k and NLEAF=1024.
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Figure 6: Speedup.
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Figure 7: Absolute time.

Increasing number of nodes shows good
scaling as a result of more time spent in
computation than in communication and waiting
(Figures 8 to 11).
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Figure 8: Scalapack
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Figure 9: Elemental
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Figure 10: Task-based dense
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Figure 11: Task-based BLR

Single-Node Strong Scaling

Strong scaling for N=131k continues positively un-
til 25 threads as can be seen in Figure 13. The
scaling is worse than dense factorization due to
lack of compute intensity.
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Figure 12: Speedup.

Single-Node Bandwidth Utilization

Bad scaling post 25 threads can be attributed
to lack of computational intensity for a BLR matrix,
leading to lesser bandwidth utilization.
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Figure 13: Single node bandwidth utilization.

Conclusion

Almost ideal speedup and better time to so-
lution of BLR factorization is acheived on single
threaded, multi node execution due to bet-
ter scheduling by the run time system. However, the
speedup of BLR factorization isworse than dense
for single node, multi-threaded execution due to lack
of compute intensity. This is proven by poor uti-
lization of available bandwidth.
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