
Distributed Memory Task-Based Block Low Rank Direct Solver
Sameer Deshmukh 1 Rio Yokota 1

1School of Computing, Tokyo Institute of Technology

Abstract

Dense LU factorization takes O(N 3) time.
The Block Low Rank matrix format reduces the
computation time to O(N 2) and storage cost to
O(N 1.5). This work compares a task-based dis-
tributed Block Low Rank LU factorization against
various distributed dense matrix LU factorization
implementations.

Block Low Rank (BLR) matrix

The Block Low Rank (BLR) matrix allows ex-
pressing a large dense matrix as a collection of low
rank and dense blocks. Fig. 1 shows a BLR ma-
trix with diagonal dense blocks and off-diagonal low
rank blocks.

U

S VT

The 'S' has
the same

dimensions
as the rank.

DENSE BLOCK LOW RANK

Figure 1: Large block dense matrix as a BLR matrix.

LU Factorization

The LU factorization splits a dense matrix into
lower and upper triangular matrices.

DENSE
MATRIX L

U

Figure 2: Dense matrix LU factorization.

Blockwise LU factorization

A00 A01

A10 A11

A01

A10 A11

L
U

A01

A10 A11

L
U

Dense Matrix Divide into
sub-blocks GETRF(A00)

TRSM(L, A01)
TRSM(U, A10)

A00 A01

A10 A11

Reduce A11
with GEMM

A00 A01

A10 L
U

GETRF(A11)

Figure 3: Block LU factorization.

Fig. 3 shows that an LU factorization can calcu-
lated by dividing a large matrix into blocks
and performing operations per block (also called
’kernels’).
• Factor A00 = L00U00.
• Compute A10 = A10U

−1
00 and A01 = L−1

00 A01.
• Reduce A11 = A11 − A10A01.
• Factor A11 = L11U11.

Runtime-Based Systems: starPU

A runtime system such as starPU expresses a com-
putation as a flow of tasks and overlaps com-
putation and communication. Each kernel of the
blockwise LU can be expressed as a task. StarPU
executes this graph, inserts asynchronous com-
munication between tasks and runs independent
tasks in parallel.

0

1 1

2 2 2

3

Figure 4: Computation expressed as tasks and edges in a run
time system. Same colored nodes are executed together.

Distributed low rank LU problems

Lack of computational intensity combined with
irregular size of tasksmakes it hard to correctly to
optimize distributed low rank LU factorization. This
leads to several problems, as shown in Fig. 5.

?

?
? ?

? ?

? ?

? ?

Execution
trace

Process Busy

Process Idle

LOAD BALANCE

PROCESS
DISTRIBUTION

COMMUNICATION

THE IDEAL
SOLUTION

How do we minimize communication?

How do we maximize message sizes?

How do we achieve ideal load balance?

How do we minimize idle time?

How do we 
maximize parallelism?

Figure 5: Trade-offs for low rank distributed LU factorization.

The problem of load balance can be solved with the
use of run time systems.

Multi-Node Strong Scaling

Comparison of various dense LU factorization imple-
mentations against task-based BLR LU factorization.
Executed using single thread on a varying num-
ber of nodes. N=32k and NLEAF=1024.

20 21 22 23 24

NODES

20

21

22

23

24

SP
EE

DU
P

SCALAPACK
ELEMENTAL
TASK BASED BLR
TASK BASED DENSE
ideal

Figure 6: Speedup.

20 21 22 23 24

NODES

24

25

26

27

28

29

210

211

AB
SO

LU
TE

 F
AC

TO
RI

ZA
TI

ON
 T

IM
E

SCALAPACK
ELEMENTAL
TASK BASED BLR
TASK BASED DENSE

Figure 7: Absolute time.

Increasing number of nodes shows good
scaling as a result of more time spent in
computation than in communication and waiting
(Figures 8 to 11).

1 4 6 9 12 16
NPROCS

0

100

200

300

400

500

600

TI
M

E

COMPUTE
WAIT
OVERHEAD

Figure 8: Scalapack
1 4 6 9 12 16

NPROCS
0

500

1000

1500

2000

2500

TI
M

E

COMPUTE
WAIT
OVERHEAD

Figure 9: Elemental

1 4 6 9 12 16
NPROCS

0

100

200

300

400

500

600

TI
M

E

COMPUTE
WAIT
OVERHEAD

Figure 10: Task-based dense
1 4 6 9 12 16

NPROCS
0

50

100

150

200

TI
M

E

COMPUTE
WAIT
OVERHEAD

Figure 11: Task-based BLR

Single-Node Strong Scaling

Strong scaling for N=131k continues positively un-
til 25 threads as can be seen in Figure 13. The
scaling is worse than dense factorization due to
lack of compute intensity.

20 21 22 23 24 25

THREADS

20

21

22

23

24

25

SP
EE

DU
P

Single-node multi-threaded speedup. N=131072
TASK BASED DENSE
TASK BASED BLR
LAPACK
ideal

Figure 12: Speedup.

Single-Node Bandwidth Utilization

Bad scaling post 25 threads can be attributed
to lack of computational intensity for a BLR matrix,
leading to lesser bandwidth utilization.

20 21 22 23 24 25

THREADS

2 14

2 11

2 8

2 5

2 2

21

BW
 (G

B/
s)

Bandwidth utilization N=131072

LAPACK
TASK BASED DENSE
TASK BASED BLR

Figure 13: Single node bandwidth utilization.

Conclusion

Almost ideal speedup and better time to so-
lution of BLR factorization is acheived on single
threaded, multi node execution due to bet-
ter scheduling by the run time system. However, the
speedup of BLR factorization isworse than dense
for single node, multi-threaded execution due to lack
of compute intensity. This is proven by poor uti-
lization of available bandwidth.

Acknowledgement

This work was supported by JSPS KAKENHI Grant
Numbers JP18H03248, JP17H01749.


