

Codesign Supercomputer Fugaku and Target Applications through Performance Optimization

Kazunori Mikami, Hirofumi Tomita, Kazuo Mikami RIKEN Center for Computational Science

Supercomputer Fugaku

- the flagship supercomputer of Japan
- development started in FY2014, due production service in FY2020

Target applications

- represent the social/scientific priority issues selected by the ministry
- use different numerical schemes, grid structures, data types
- cover typical applications workload in total

Codesign goal

• complete Fugaku making it deliver the efficient computing capability for a range of applications

• modernize target applications to achieve expected performance on Fugaku, and on similar HPC systems

Target application	Type of algorithm	#nodes /job	structur ed grid	unstruct ured grid	particle method	dense matrix (local)	dense matrix (dist.)	comm. latency	comm. B/W	neighbo r comm.	global comm.	heavy I/O
GENESIS	Molecular dynamics for proteins	1										
Genomon	Genome data analysis	96										
GAMERA	Earthquake simulation using hybrid grid FEM	entire										
NICAM+LETKF	Weather prediction using structured FVM + LETKF	131072										
NTChem	Electron correlation energy using molecular orbital method	20732										
ADVENTURE	Structure analysis FEM	4096										
RSDFT	Electronic-structure calculations using density functional theory	10368										
FFB	Thermal fluid flow using FEM	entire										
LQCD	Lattice QCD simulation using grid Monte Carlo method	147456										

Codesign approach

• simultaneous development of the system and applications using performance measures, under power constraint

Codesign from target application's view

Repeat optimizing the application, interacting with system development

Optimization in system software

incorporate the tuning capability into compilers as much as possible

automatic optimization feature, additional fine control directives, useful compiler messages for performance consideration

	U					
				compiler's au	utomatic optim	nization feature
seq. and serial inner prod.	[860]	unrolling	[sec]	aggressive opt	imization	Fugaku
25	25 24		25	Four instructions commit		

- identify the performance bottleneck utilizing performance tools
 - optimization effort in applications
 - alternative algorithm, source level manual tuning
 - system design improvement request for feasibility study
- rerun the cycle with new source code and new design parameters
 - look for further optimization possibility from different angles

Performance bottleneck analysis using tools

tools for analysis on existing platform

- general profilers(fipp/fapp) statistics
- precise PA (HWPC) for detail component analysis
- flops, intops, B/W, SIMD rate, cash hit/miss, ..

tools for Fugaku performance prediction

- PA prediction tool using FX100 precise PA : static, interpolation, quick
- instruction simulators : dynamic, accurate, expensive
- Fugaku prototype test vehicle
 - prediction tools are private ,except for RIKEN simulator available at https://github.com/RIKEN-RCCS/riken_simulator

Addressing bottlenecks

discuss how the bottleneck should be improved – apps, system S/W, H/W

- applications: tuning effort in applications is essential
- system S/W: enhancing compilers and libraries
- System H/W: specification design and implementation enhancement

Optimization in applications

Optimization in system hardware

enhance CPU architecture to resolve bottleneck indicated by applications

- A64FX instruction handling mechanism in L1 cache
 - combined gather mechanism
- do i=1,n a(i) = b(index(i)) end do
- reduce the gather overhead in 128B address space
- cache eviction reducing mechanism

do i=1,n a(i,j) = (b(i,j)+b(i+1,j)+b(i,j+1)) * (c(i,j)+c(i+1,j)+c(i,j+1)) + .. end do

mitigate cache refill penalty for codes needing lots of load streams

User option in performance and power balance

users can choose the combination of:

• CPU frequency mode (2GHz/2.2GHz) and economy mode (on/off) administrators can deploy a policy to promote the intended operation

Average of Target applications phase do not guarantee the performance, power and other attributes of the supercomputer Fugaku at the start of its operation

manual tuning is required in many situations

- choose good algorithm, most importantly
- simplify the code structure, rewrite code for better instruction mix
- existing HPC tuning tactics are usually effective

optimization effort in communication bound app

 NICAM+LETKF deployed new frame work adopting global alltoall among all members, instead of sequential gather/scatter from every ensemble member, which resulted in dramatic performance improvement

Codesign achievements

numerous optimization cycles resulting in:

- Target applications production ready from day 1 on Fugaku
 - optimized performance on Fugaku, also efficient on modern HPC systems
 - in depth programming guide for succeeding applications
- Fugaku hardware and software oriented to HPC applications demand
 - 60+ codesign requests were reflected in the system development phase
 - early stage codesign contributes to the systems architecture:
 - processor and memory specification, data mechanism
 - later stage codesign contributes to the system software:
 - compiler optimization feature, numerical library, MPI/network library

codesign	арр	design request	design implementation				
1	1 common separate services from computation		integrated assistant cores				
2	2 LQCD zero noize operating system		McKernel OS option per job				
3	FFB	relieving L1 pressure in indirect SIMD load	combined gather mechanism				
4	GAMERA	automatic and optimized loop fission	compiler enhancement				
60 more	•••	•••	•••				