
Codesign Supercomputer Fugaku
and Target Applications

through Performance Optimization

Target applications
• represent the social/scientific priority issues selected by the ministry
• use different numerical schemes, grid structures, data types
• cover typical applications workload in total

Target
application

Type of algorithm #nodes
/job

structur
ed grid

unstruct
ured
grid

particle
method

dense
matrix
(local)

dense
matrix
(dist.)

comm.
latency

comm.
B/W

neighbo
r comm.

global
comm.

heavy
I/O

GENESIS Molecular dynamics for proteins 1 ☑ ☑ ☑

Genomon Genome data analysis 96 ☑

GAMERA Earthquake simulation using hybrid grid FEM entire ☑ ☑ ☑ ☑

NICAM+LETKF Weather prediction using structured FVM + LETKF 131072 ☑ ☑ ☑ ☑ ☑

NTChem Electron correlation energy using molecular orbital method 20732 ☑ ☑ ☑ ☑ ☑

ADVENTURE Structure analysis FEM 4096 ☑ ☑ ☑ ☑ ☑ ☑

RSDFT Electronic-structure calculations using density functional theory 10368 ☑ ☑ ☑ ☑ ☑

FFB Thermal fluid flow using FEM entire ☑ ☑ ☑

LQCD Lattice QCD simulation using grid Monte Carlo method 147456 ☑ ☑ ☑ ☑ ☑

User option in performance and power balance
users can choose the combination of:
• CPU frequency mode (2GHz/2.2GHz) and economy mode (on/off)
administrators can deploy a policy to promote the intended operation

Codesign approach
• simultaneous development of the system and applications using

performance measures, under power constraint
Codesign from target application’s view
Repeat optimizing the application, interacting with system development
• identify the performance bottleneck utilizing performance tools

• optimization effort in applications
• alternative algorithm, source level manual tuning

• system design improvement request for feasibility study
• rerun the cycle with new source code and new design parameters

• look for further optimization possibility from different angles
Performance bottleneck analysis using tools
tools for analysis on existing platform
• general profilers(fipp/fapp) statistics
• precise PA (HWPC) for detail component analysis

• flops, intops, B/W, SIMD rate, cash hit/miss, ..
tools for Fugaku performance prediction
• PA prediction tool using FX100 precise PA : static, interpolation, quick
• instruction simulators : dynamic, accurate, expensive
• Fugaku prototype test vehicle

• prediction tools are private ,except for RIKEN simulator available at
https://github.com/RIKEN-RCCS/riken_simulator

Codesign achievements
numerous optimization cycles resulting in:
• Target applications production ready from day 1 on Fugaku

• optimized performance on Fugaku, also efficient on modern HPC systems
• in depth programming guide for succeeding applications

• Fugaku hardware and software oriented to HPC applications demand
• 60+ codesign requests were reflected in the system development phase
• early stage codesign contributes to the systems architecture:

• processor and memory specification, data mechanism
• later stage codesign contributes to the system software:

• compiler optimization feature, numerical library, MPI/network library
codesign app design request design implementation

1 common separate services from computation integrated assistant cores
2 LQCD zero noize operating system McKernel OS option per job
3 FFB relieving L1 pressure in indirect SIMD load combined gather mechanism
4 GAMERA automatic and optimized loop fission compiler enhancement

60 more … … …

Kazunori Mikami, Hirofumi Tomita, Kazuo Mikami
RIKEN Center for Computational Science

Supercomputer Fugaku
• the flagship supercomputer of Japan
• development started in FY2014, due producjon service in FY2020

Codesign goal
• complete Fugaku making it deliver the efficient computing capability for a range of applications
• modernize target applications to achieve expected performance on Fugaku, and on similar HPC systems

precise PA snapshot

Addressing bottlenecks
discuss how the bottleneck should be improved – apps, system S/W, H/W
• applications: tuning effort in applications is essential
• system S/W: enhancing compilers and libraries
• System H/W: specification design and implementation enhancement

Optimization in applications
manual tuning is required in many situations
• choose good algorithm, most importantly
• simplify the code structure, rewrite code for better instruction mix
• existing HPC tuning tactics are usually effective

optimization effort in communication bound app
• NICAM+LETKF deployed new frame work adopting global alltoall among all

members, instead of sequential gather/scatter from every ensemble
member, which resulted in dramatic performance improvement

Optimization in system software
incorporate the tuning capability into compilers as much as possible
• automatic optimization feature, additional fine control directives, useful

compiler messages for performance consideration

Optimization in system hardware
enhance CPU architecture to resolve bottleneck indicated by applications
• A64FX instruction handling mechanism in L1 cache

• combined gather mechanism
• reduce the gather overhead in 128B address space

• cache eviction reducing mechanism
• mitigate cache refill penalty for codes needing lots of load streams

do i=1,n
a(i) = b(index(i))
end do

do i=1,n
a(i,j) = (b(i,j)+b(i+1,j)+b(i,j+1)) * (c(i,j)+c(i+1,j)+c(i,j+1)) + ..
end do

��))(���)�
��

��))(����,�)���
��������	
��)������)���,�)����)�)��)�

�,�) �,�)

eco mode freq.
mode

speedup
/job

time
(sec.) power (W) energy

(Wh)
boost 7.8 990.2 161.3 44.4
normal 7.4 1040.2 143.8 41.5
boost 5.5 1408.4 117.4 45.9
normal 5.1 1526.4 105.6 44.8

off

on

���)�����,�)���)�)�
�����
��)����..)����)�����)�)��)�

l NTChem power profile example, same job, same # of nodes/job

l speed and power axes are both relative to eco off normal mode

NICAM+LETKF
1024 ensemble members x
128 nodes/member

seq. and serial inner prod. unrolling aggressive optimization Fugaku

compiler aggressive optimization
loops restructured,

SVE SIMD instructions,
software pipelining

compiler’s automatic optimization feature

l Scalar code example

l Loop fusing for longer loop

l Dimension exchange for shorter memory access stride
l The effect

l reduced data access wait time (lower green and flesh color)

l still long f.p. ops wait time (violet) because of sequential(non-SVE) ops

jme in verjcal axis
Color represents the architectural components where
the instrucjons are handled and are busy.

l Average of Target applications The results obtained on the evaluation environment in the trial
phase do not guarantee the performance, power and other
attributes of the supercomputer Fugaku at the start of its operation.

https://github.com/RIKEN-RCCS/riken_simulator

