
Conceptual Model

+

Bringing your UQ workflows
to the exascale!

Vytautas Jancauskas (jancauskas@lrz.de) [1], Jalal Lakhlili (jalal.lakhlili@ipp.mpg.de) [2], Onnie Luk [2], Wouter Edeling [3], Robin A. Richardson [4],
David W. Wright [5], Robert Sinclair [6], Bartosz Bosak [7], Piotr Kopta [7], Derek Groen [8]

[1] Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Germany [2] Max-Planck-Institut für Plasmaphysik, Germany [3] Centrum Wiskunde & Informatica, Netherlands [4] eScience Center, Netherlands [5] GTN Ltd, London, UK
[6] University College London, UK [7] Poznań Supercomputing and Networking Center [8] Department of Computer Science, Brunel University London, UK.

Partners References & Acknowledgements

What is EasyVVUQ?
https://github.com/UCL-CCS/EasyVVUQ

EasyVVUQ is a Python 3 library designed to facilitate verification,
validation and uncertainty quantification (VVUQ) for a wide variety of
simulations. It was conceived and developed within the EU funded
VECMA (Verified Exascale Computing for Multiscale Applications)
project.

We use the existing Python scientific computing infrastructure and
extend it with tools for executing the jobs in HPC environments. We also
automate away most of the tedious details of UQ usage scenarios.

Why You Need EasyVVUQ?
UQ typically requires a very large number of jobs to be run and
analysed. Most existing UQ tools are not designed with large scale
execution in mind. Therefore, we have designed EasyVVUQ to
augment them with the capabilities to run on modern HPC
machines. The framework is designed to be open-ended with
regards to the execution of simulations. It is currently possible to
execute jobs locally or on HPC clusters using QCG pilot job or Dask
JobQueue.

Existing simulations can make use of EasyVVUQ by extending
several of the classes that make up the framework. In most cases
these would just be the Encoder and Decoder responsible for
parsing the inputs and outputs of your simulation respectively.

The end goal of EasyVVUQ is to allow you to test your UQ
procedures on your laptop and then take it directly to a
supercomputer. It is designed to be flexible, fault tolerant and
resumable. In the code example below, we outline a typical use
scenario. It involves a toy simulation of a cooling coffee cup and
goes through all the main stages of a UQ run with EasyVVUQ.

Large scale execution

Direct submission of a large group of jobs to a scheduling system can result in
long aggregated time to finish as each single job is scheduled independently and
waits in the queue. To ensure efficient allocation, we create large container jobs
within which we can then allocate and schedule the individual simulation runs. To
do this, we can use either the QCG PilotJob[3] component in the VECMA Toolkit or
Dask JobQueue[5].

QCG PilotJob Manager is designed to schedule and execute many jobs inside a
single allocation. It provides a container for sub-jobs, for which necessary
resources are then assigned efficiently. In order to simplify the use of QCG
PilotJob from EasyVVUQ workflows, a lightweight integrating code
EASYVVUQ-QCGPJ[4] is provided (e.g. for Fusion and UrbainAir applications[7]).
Users can also choose to use Dask JobQueue, which is useful for smaller runs.

For two applications (migration and CFD[7]) we combined complex workflows,
using automation, remote access and curation features from FabSim3[6], with
VVUQ offered by EasyVVUQ. This integration can be made either by using the
FabSim3 API in a script, or by incorporating EasyVVUQ in a FabSim3 plugin.

Overall workflow
Campaign

Parameter Space Description
vary = {
 "kappa": cp.Uniform(0.025, 0.075),
 "t_env": cp.Uniform(15, 25)
}

Encoder
encoder = uq.encoders.GenericEncoder(
 template_fname='tutorial_files/cooling.template',
 delimiter='$',
 target_filename='cooling_in.json')

Decoder
decoder = uq.decoders.SimpleCSV(target_filename="output.csv",
 output_columns=["te"],
 header=0)
Sampling
my_sampler = uq.sampling.PCESampler(vary=vary, polynomial_order=3)
my_campaign.draw_samples()

Model evaluation

Aggregation
my_campaign.collate()

Analysis
analysis = uq.analysis.PCEAnalysis(sampler=my_sampler, qoi_cols=output_columns)

Descriptive Statistics
results = my_campaign.get_last_analysis()

QCG-PJ
qcgpjexec = Executor()
qcgpjexec.create_manager(dir=my_campaign.campaign_dir)
qcgpjexec.add_task(Task(
 TaskType.EXECUTION,
 TaskRequirements(cores=Resources(exact=1)),
 application=app
))
qcgpjexec.run(
 campaign=my_campaign,
 submit_order=SubmitOrder.EXEC_ONLY)
qcgpjexec.terminate_manager()

Dask JobQueue

my_campaign = uq.CampaignDask(name='coffee_pce')
cluster = SLURMCluster(job_extra=['--cluster=mycluster'],
 queue='myqueue',
 cores=48, memory='64 GB')
cluster.scale(96)
client = Client(cluster)

my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(app))

OR

my_campaign = uq.Campaign(name='cooling_cup')

[1] Derek Groen et al. "Introducing VECMAtk-Verification, Validation and Uncertainty Quantification for
Multiscale and HPC Simulations". International Conference on Computational Science. Springer, Cham, 2019.
[2] Tomasz Piontek et al. "Development of science gateways using qcg — lessons learned from the deployment on
large scale distributed and hpc infrastructures". Journal of Grid Computing 14(4) (Dec 2016) 559–573.
[3] QCG PilotJob https://github.com/vecma-project/QCG-PilotJob
[4] EasyVVUQ-QCGPJ https://github.com/vecma-project/EasyVVUQ-QCGPJ
[5] Dask JobQueue https://github.com/dask/dask-jobqueue
[6] FabSim3 https://github.com/djgroen/FabSim3
[7] VECMAtk application tutorials https://www.vecma-toolkit.eu/tutorials/

We acknowledge funding support from the European Union’s Horizon 2020 research and
innovation programme under grant agreement 800925 (VECMA project, www.vecma.eu).

+

*From the Uncertainpy documentation (uncertainpy.readthedocs.io).

Typical scenario

mailto:jancauskas@lrz.de
mailto:jalal.lakhlili@ipp.mpg.de
https://github.com/UCL-CCS/EasyVVUQ
https://github.com/vecma-project/QCG-PilotJob
https://github.com/vecma-project/EasyVVUQ-QCGPJ
https://github.com/dask/dask-jobqueue
https://github.com/djgroen/FabSim3
https://www.vecma-toolkit.eu/tutorials/
https://uncertainpy.readthedocs.io

