
GPU Mangrove
Execution Time and Power Prediction

Lorenz Braun, Sotirios Nikas,
Chen Song, Vincent Heuveline,
Holger Fröning
{lorenz.braun, holger.froening}@ziti.uni-heidelberg.de,
{sotirios.nikas, vincent.heuveline}@uni-heidelberg.de,
chen.song@iwr.uni-heidelberg.de
Ruprecht-Karls University of
Heidelberg, Germany

Motivation
Predicting compute kernel execution behavior
on GPUs is a difficult task. Scheduling GPU
kernels can profit tremendously from
modelling performance and power, improving
the computation of workloads. Previous work
has taken on this task using analytical models
and machine learning. While good results were
achieved, it is not known how well these
approaches work for different GPU
architectures (lack of portability). Also, to our
knowledge, there are no public models for
performance and power predictions (lack of
availability).

Hypothesis:well-structured, locality-
optimized and latency-tolerant GPU kernels
should, in average, behave agnostic of
hardware-related dynamic effects in terms of
time and power consumption and depend
much more on properties of the code that is
being executed.

With GPUMangrove we propose a model for
execution time and power prediction which is
simple, portable and fast.

Portable Code Features
To achieve portability, the code features must
not depend on the GPU used, leaving a choice
of possible features which are mainly covered
by instruction counter and kernel launch
configuration (e.g. CUDA grid size).

Features collected on one GPU can be used as
model input for prediction on another GPU.
This combined with compile time analysis
coupled with a runtime system for prediction
would allow to compute the code features
before kernel execution and without using
samples produced on other GPUs.

Table 1: CUDA Flux Feature Overview

We use CUDA Flux [2] for instrumenting and
executing the GPU kernels and gather the code
features. Table 1 gives a rough outline which
information is gathered with CUDA Flux.

Prediction Model
Data for our prediction model is generated
using CUDA Flux with four major benchmark
suites: Rodinia[3], Parboil[4], SHOC[5] and
Polybench-GPU[6]. From these four
benchmark suites 189 kernels could be used
for execution time prediction and 169 for
power prediction. Profiling and measurement
of kernel execution time and power are done in
separate steps (Figure 1). For a given set of
benchmarks the profiling step is only
performed once and the measurement of time
and power is done for each individual GPU.

Figure 1: Workflow for execution time and power
prediction

The data is used to construct a model for each
GPU. We used the Extremely Randomized
Trees Regression Algorithm to train our model
due to rather fast training time and the limited
amount of samples at hand. Nested cross-
validation was used to find reasonably good
hyperparameters and to ensure good
generalization. As the range of time
measurements was very large we choose to
train the models on the mean absolute
percentage error (MAPE).

Figure 2: GPU Mangrove prediction results on
execution time (left) and power (right) on five GPUs

Results
The results of nested cross-validation across all
five GPUs of time and power prediction are
summarized in Figure 2. MAPE scores for all
iterations with random splits of nested cross-
validation with median, first and third quartile
are shown. The prediction latency of the
unoptimized models varies between 15 and 110
ms.

Using a random forest algorithm allows to
evaluate the relative importance of each
feature. Figure 3 shows the importances for a
NVIDIA K20 GPU. The most important
features are mostly in line with our
expectations. Surprisingly, parameter memory
volume seems to be important for both
models. This could indicate that
computationally complex kernels have more
parameters.

Figure 3: Feature Importance of execution time model (left)
and power model (right) for a NVIDIA K20 GPU

Summary
We conclude that in the scope of our work the
results support our hypothesis; fast prediction
of execution time and power consumption
based solely on hardware-independent
features is feasible.

However, there is still room for improvement:
some effects like caching between kernel
launches, bank conflicts and branch
divergence are not covered by our features.
Also, a larger training dataset including more
samples, specifically longer and more
computational intensive kernels, would be
helpful to improve the prediction accuracy.

More details here:
• https://arxiv.org/abs/2001.07104
• https://github.com/UniHD-CEG/gpu-mangrove

References
[1] Braun, Lorenz, et al. "A Simple Model for Portable and
Fast Prediction of Execution Time and Power
Consumption of GPU Kernels." arXiv preprint
arXiv:2001.07104 (2020).
[2] Braun, Lorenz, and Holger Fröning. "CUDA Flux: A
Lightweight Instruction Profiler for CUDA
Applications." PMBS Workshop, collocated with
International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC2019). 2019.
[3] Che, Shuai, et al. "A characterization of the Rodinia
benchmark suite with comparison to contemporary CMP
workloads." IEEE International Symposium on Workload
Characterization (IISWC'10). IEEE, 2010.
[4] Stratton, John A., et al. "Parboil: A revised benchmark
suite for scientific and commercial throughput
computing." Center for Reliable and High-Performance
Computing 127 (2012).
[5] Danalis, Anthony, et al. "The scalable heterogeneous
computing (SHOC) benchmark suite." Proceedings of the
3rd Workshop on General-Purpose Computation on
Graphics Processing Units. 2010.
[6] Grauer-Gray, Scott, et al. "Auto-tuning a high-level
language targeted to GPU codes." 2012 Innovative
Parallel Computing (InPar). Ieee, 2012

180

200

K20 TitanXp P100 V100 GTX1650
0

20

40

60

80

100

GPU

M
AP

E[
%]

K20 TitanXp P100 V100 GTX1650
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

GPU

M
AP

E[
%]

Collect
Kernel Metrics

Measure
Kernel Time / Power

Kernel Metrics Time / Power
Information

Model Training

Time / Power
Model

Online Metric
Collection

Time / Power
Prediction Kernel Metrics

Time / Power
Estimate

Benchmark
Collection

CUDA Application

Profiling Info. Input Feature

PTX instructions

total instructions
global memory vol
shared memory vol
special operations
logic operations
sync operations

kernel launch
configuration

threads per CTA
number of CTAs

dynamic shared memory

0 5 10 15 20
importance[%]

special operations

logic operations

sync operations

control operations

shared memory volume

arithmetic intensity

arithmetic opeations

total instructions

CTAs

global memory volume

threads per CTA

param memory volume

0 5 10 15 20
importance[%]

special operations

arithmetic intensity

shared memory volume

control operations

logic operations

total instructions

sync operations

arithmetic opeations

global memory volume

param memory volume

CTAs

threads per CTA


