# **Gigapixel Patch Semantic Segmentation for Histopathology**

Ruben Hekster, Damian Podareanu, Joris Mollinga, Jieyi Li



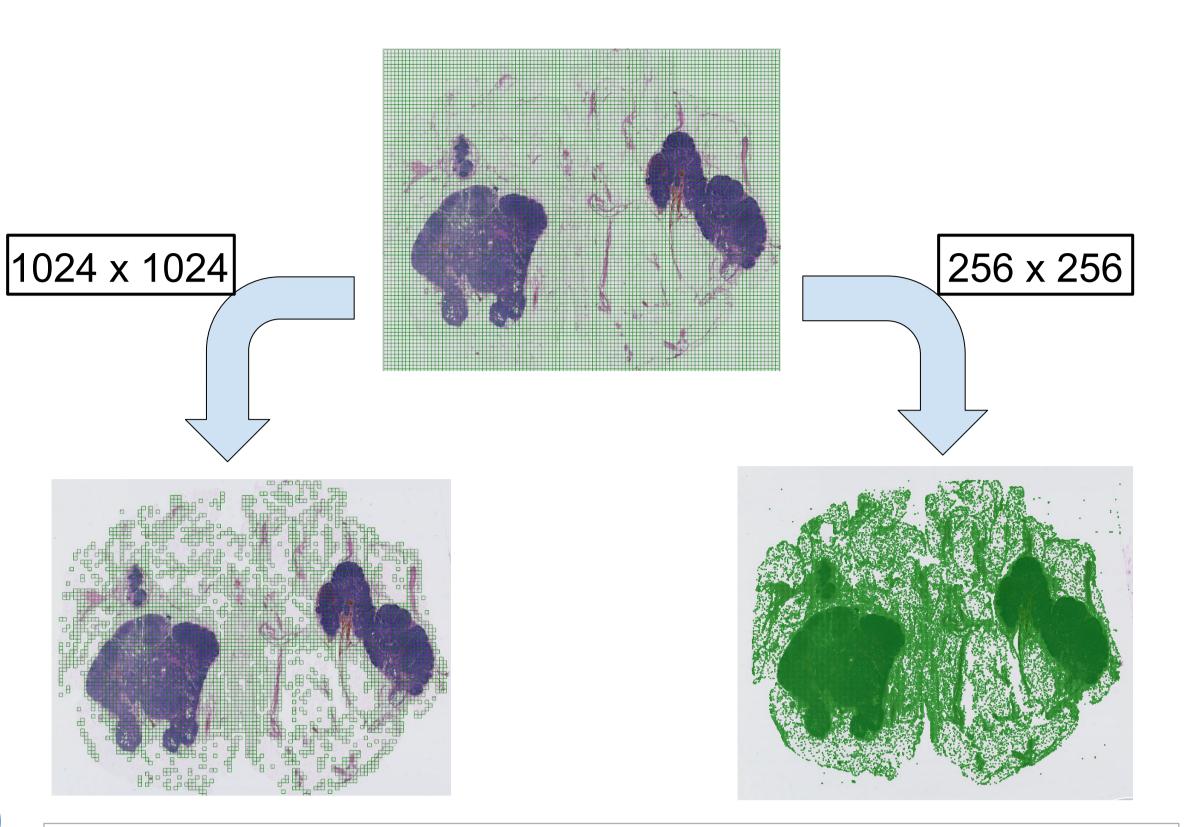


# **1. Introduction**

**SC** High Performance

- Whole Slide Images (WSIs) have very large resolution image files (100,000 x 200,000 pixels) and depict human tissue. They are used for cancer diagnosis in clinical practice.
- These WSIs are annotated by medical experts, creating a mask representing the cancers location. The mask has similarly large dimensionality as the WSI."
- This annotation can also be accomplished using **Deep Learning (DL)** techniques.
- Digital evaluation of entire WSIs is not possible due to **memory constraints**. The common approach is to create patches (squares) which can be evaluated digitally.

This poster focuses on **stepwise increasing the** patch size (field of view) and discusses scalability issues when training a semantic segmentation model with large patch sizes on a distributed system.



### 2. Positioning with respect to related work

- The Diagnostic Image Analysis Group of the Department of Pathology at the Radboud University Medical Center in Nijmegen, the Netherlands, organised the CAMELYON16 - and the CAMELYON17 challenges (CAncer MEtastases in LYmph nOdes challeNge).
- [1], which won the CAMELYON16 challenge using patches of 256 times 256 pixels and the GoogLeNet architecture, indicated they got better results on the non-downsampled images compared to downsampled.
- Analysis of entire WSI has only been achieved through compression, like in [2].

# 3. Histopathology Datasets

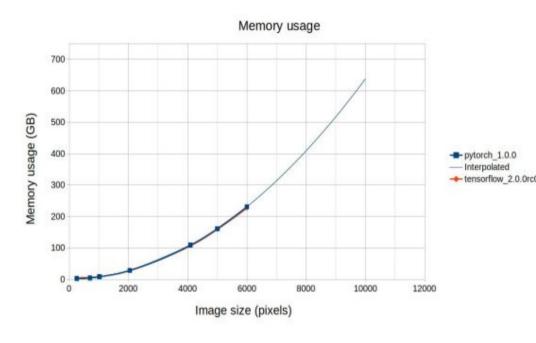
For this research, two common pathology datasets were used, for TIFF format images:

#### CAMEYLON16

- 270 pixel annotated WSIs.
- Data from two medical centers, average memory footprint of 1.9GB per WSI.

#### CAMELYON17

- 500 pixel annotated WSIs.
- Data from five medical centers, average memory footprint of 3.4GB per WSI.
- On the right we can see the relation between the patch size and the memory footprint of model training.



Due to memory constraint, at this point we cannot process entire WSI's.

# 4. Model and training system

Example of a Whole - Slide - Image that is divided in smaller patches, representing different field - of views. On the left side, the patches are 1024 x 1024, and on the right side the patch size is 256 x 256. This enables the evaluation of different types of contextual information, contributing to the pathology classification. As is to be seen, we discard a large part of the patches, due to the patch belonging to the background, and thus not containing any tissue of interest.

# **5. Results on Memory vs. Accuracy**

Main insight: Enlarging the patch size increases accuracy.

This shows a trade off between memory and accuracy.

Table 2. CAMELYON16 results for size 256, 704, 1024, 2048

|                   | 256    | 704    | 1024   | 2048   |
|-------------------|--------|--------|--------|--------|
| Val. Accuracy     | 0.7756 | 0.9313 | 0.9453 | 0.9410 |
| Val. mIoU         | 0.6086 | 0.8647 | 0.9167 | 0.9231 |
| Val. AUC          | 0.7459 | 0.9259 | 0.9537 | 0.9578 |
| Val. dataset size | 560    | 160    | 92     | 70     |

Table 3. CAMELYON17 results for size 256, 704, 1024, 2048, from different medical centers

|                       |                   | 256    | 704    | 1024   | 2048   |
|-----------------------|-------------------|--------|--------|--------|--------|
|                       | Val. accuracy     | 0.7982 | 0.9364 | 0.9566 | 0.9502 |
| Training centers: all | Val. mIoU         | 0.6489 | 0.8734 | 0.9102 | 0.9268 |
| Val. center: all      | Val. AUC          | 0.7812 | 0.9344 | 0.9560 | 0.9643 |
|                       | Val. dataset size | 552    | 180    | 104    | 76     |

# 6. Distributed training on Endeavour

- Our largest training run featured 256 dual-socket Intel Xeon Platinum 8260 nodes, each with 192 GB of memory, interconnected by a low-latency 100GB/s Intel OmniPath network. We used Intel MKL and Intel MKL-DNN for efficient execution for the CPU runs. In order to maximize per-node throughput, we used 2 training processes per node, each pinned to a separate
- The architecture used is based on the deep neural semantic segmentation network Deeplab V3+, which has proven effective using Atrous Spatial Pyramid Pooling (ASPP). This means that pooling operations exist in the encoder - decoder structure at different scales of receptive fields.
- This reduces computational complexity, while at the same time enables multi scale analysis of **contextual** information.
- This also makes use of depthwise separable convolutions, further reducing the computational requirements.

| Conv<br>kernel: 3x3<br>rate: 6 | Conv<br>kernel: 3x3<br>rate: 12 | Conv<br>kernel: 3x3<br>rate: 18 | Conv<br>kernel: 3x3<br>rate: 24 |
|--------------------------------|---------------------------------|---------------------------------|---------------------------------|
| rate = 6                       | rate = 12                       | rate = 18                       |                                 |
| Input Feature                  |                                 | Atrous Spa                      | atial Pyramid Pooling           |

The model is trained using four NVIDIA<sup>®</sup> Titan<sup>®</sup> RTX GPU's with 24 GB of GDDR6 memory. The memory consumption for a batch size of 1 at the patch size of 2048x2048 pixels is ~25GB. Hence, for the larger experiments we perform model training on the Endeavour Supercomputer.

Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer (2016) [2] Tellez, D., Litjens, G., van der Laak, J., Ciompi, F.: Neural image compression for gigapixel histopathology image analysis (2018) [3] Sergeev, A., Balso, M.D.: Horovod: fast and easy distributed deep learning in TensorFlow. (2018)

socket, effectively performing distributed training within a node. We note weak scaling characteristics for scale-out experiments to 256 nodes. We used Horovod [3] all - reduce, using floating-point 16 compression.

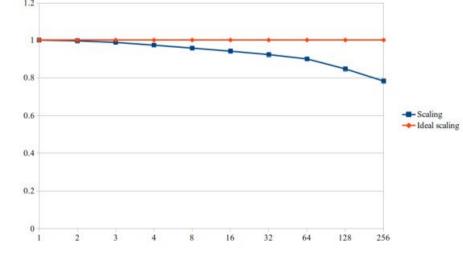


Fig. 5. Weak Scaling on 2048 patch size

## 7. Conclusion

- Multi scale contextual information is beneficial for detecting small region-of-interests in large Whole - Slide - Images.
- Patch size (Field of View) can be translated to a memory footprint of both input data in combination with model activation maps and gradients. This can be traded for accuracy on a pixel level, and on a macro level measuring evaluation metrics as mIoU and AUC.
- Scale-out experiments show that **multi-worker model-parallelism** is needed to process gigapixel size medical imaging from high quality sensing equipment.