
We use Python to develop
MPI Tools through

QMPI-mock.

MPI Tools the Easy Way
Bengisu Elis1 , Martin Ruefenacht2, Olga Pearce3 , Kathryn Mohror3 ,Martin Schulz1 , Anthony Skjellum2

1 Technical University of Munich, 2 The University of Tennessee at Chattanooga,
 3 Lawrence Livermore National Laboratory

Motivation
1. Different languages have different strengths and this

work is a stepping stone towards support for other
languages in order to implement MPI tools.

2. C/C++ and Fortran are advantageous for high
performance, but software development in these
languages is challenging.

3. Python is straightforward, portable, and it doesn’t
require complicated environments.

4. Python especially enables easy development of:
- Interactive debugging for MPI applications
- MPI call counting
- Runtime MPI argument checking as a debugger

Mechanism

Setup workflow:

1. QMPI-mock prototype will be linked with the
application instead of MPI library

2. List all tool paths in the TOOLS environment
variable

3. The application can be executed the same way as a
regular MPI application:
mpiexec -n 5 ./application

Runtime workflow:

1. QMPI-mock intercepts the MPI_Init call from the
application and sets up function pointer tables to
establish execution order of tool routines.

2. QMPI-mock calls the python interpreter to discover
the references for routines from python tools and
initialize the python environment. The references
are added to the function pointer tables.

3. Tools request and execute function pointers to
routines which belong to the tool via QMPI-mock
provided services.

Python tool example code :

from qmpi import register_handler, Invocation

@register_handler(“MPI_Init”)
def python_MPI_Init (invocation):

handle the invocation of MPI_init

return invocation.descend()

Equivalent C tool:

#include qmpi.mock.h

int c_MPI_Init (int *argc, char ***argv, int i , vector* v)
{

// handle the invocation of MPI_init

void* function_ptr ;
Int ret;
QMPI_Table_query (_MPI_Init, function_ptr);

 ret = exec_func(function_ptr , _MPI_Init , argc, argv);
return ret;

}

Discussion
● Python provides a large standard library which C/C++

and Fortran do not.
● Developers do not need to know the internals of the

function resolution.
● Using QMPI-mock for interfacing requires changes in

the MPI tool implementation, hence in the MPI
standard.

● Exact workflow and its improvement are future-work.

Results
● A Python tool can be developed by a user easily and

quickly.
● Python allows overloading of functions without having

to add boilerplate code
● Python enables usage of same handler function for

multiple MPI functions.
● Python tool is interpreted whereas C tool must be

compiled and linked after every change in the code.
● However; a certain overhead is expected due to

invocation of the CPython interpreter and the
conversion to Python types.

Contact

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-POST-807339).

Q
M

P
I

QMPI This Poster

