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Conclusions 

 

QA has shown that it has the ability to solve NP-Hard problems, 

but is as yet practical for certain types of problems due to vari-

ous overheads in preparing a problem for QA.  

Despite having only used QA on the time-indexed JSP, similar 

trends to those observed are expected for problems with similar 

properties. Problems with inefficient formulations will require 

many variables and not scale well for current QA hardware. Prob-

lems with densely connected variables will require qubit chaining 

during embedding. As the number of variables increases, em-

bedding size, embedding size range, embedding time, and em-

bedding failure rate also increase. For fewer variables, the em-

bedding failure rate can be considered negligible; however, the 

failure rate can exceed 80% for problems with many variables. 

In terms of performance, the smaller infrequently found embed-

dings are preferred considering the negative correlation between 

performance and size. Furthermore, embeddings with shorter 

chains are preferred as they will suffer less from early freezeout. 

Considering all of these factors, the best performing embeddings  

come at a high computational cost from repeated embedding, 

making a cost-performance tradeoff apparent. 

Until QA hardware contains sufficient qubits to support problem 

sizes that are intractable for classical computers, QA will be lim-

ited in practicality for some problems. 

Future Direction 

 

One of the largest challenges currently facing QA is found in the 

embedding process. While next generation hardware having 

more qubits with higher connectivity will alleviate problems 

faced in embedding, there are other avenues to address these 

challenges and improve performance. 

First is problem formulation. Problem formulation has a signifi-

cant impact on variable usage and connectivity and problem dy-

namics. Using different formulations may provide the means to 

lessen some overhead (e.g. a formulation that uses fewer varia-

bles may reduce embedding time and size). Another promising 

area is quantum-classical hybrid systems. For example, a prob-

lem can be decomposed so that both classical and quantum sys-

tems have components to solve. A different application involves 

using QA as a high quality solution sampler that is guided by a 

classical search algorithm, such as a binary search tree [1]. 
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Introduction 

 

Quantum Annealing (QA) 

QA is a metaheuristic method for minimizing functions in quad-

ratic unconstrained binary optimization (QUBO) form. 

 

 

 

where Q is an upper diagonal matrix of weights and x is a vector 

of binary variables. 

By exploiting principles of quantum physics, such as superposi-

tion and tunneling, QA has the potential to solve problems faster 

than modern classical computers. 

 

Motivation 

To utilize the D-Wave 2000Q quantum annealer, problems must 

first go through a series of preparatory steps, such as: 

• Formulation—Redefine a problem to use binary variables and 

be compatible with QUBO format. 

• Embedding—Find a mapping of QUBO variables to hardware 

qubits. 

These steps incur time and computational overheads which can 

offset potential acceleration. Furthermore, each of these steps 

can have a significant impact on the performance of QA. 

 

Objectives 

Evaluate the challenges and overheads in all phases of the QA 

process and determine how each is affected by problem size and 

complexity. 

 

Target Problem 

The problem selected for exploring the challenges of the QA 

process is the job-shop scheduling problem (JSP). The JSP is a 

classical NP-Hard optimization problem in which given a set of N 

jobs, each containing a set of O operations, and a set of M ma-

chines, find an arrangement of operations for which job order 

and machine capacity constraints are not violated.  

Common objective variations are the decision version (no con-

straints violated) and the optimization version (minimize the 

makespan, the time from start to finish). 
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Unembedding 

 

Chain Unembedding 

QUBO variables take on the value of their chain after annealing. 

Chains having differing values require a method to determine 

which value to assign the variable. We compare two methods: 

• Majority vote—Select the most frequently occurring value. 

• Minimize energy—Select the value that results in the lowest lo-

cal energy penalty. 

The majority vote unembedding method does not use any infor-

mation from the problem in determining the value of a chain. On 

the other hand, the minimize energy unembedding method uses 

local and neighboring qubit biases to determine which configu-

ration results in the lowest energy. Because of this, the minimize 

energy unembedding method may result in more high quality 

configurations. 

 

Formulation 

D-Wave Binary CSP (DBC) 

• Developed by D-Wave. 

 

PyQUBO (PYQ) 

• Developed by Recruit Com-

munications. 

Time-indexed JSP 

To prepare the JSP as a QUBO, a formulation using binary varia-

bles is required. We use the time-indexed JSP formulation intro-

duced in [1]. The time-indexed JSP formulation has the following 

properties:  

• Binary transformation— variables to indicate the start of every 

operation at every time interval 

• Execution upper bound = T 

• Extra constraint—operations start exactly once 

This formulation requires                    variables, however, variable 

pruning techniques based on operation precedence are used to 

prune variables leading to impossible schedules. 

 

Instance Parameters 

Random JSP instances were generated having the following 

properties: 

• M, N— range from 3 to 7 

• Operation processing times— subset of [0, 1, 2] 

• T— the optimal makespan for the instance, calculated using 

classical tools. 

Instances were discarded if the resulting QUBO was too large to 

be embedded onto the annealer. 

 

QUBO Tools 

Both tools use the same number of QUBO variables, but DBC in-

troduces additional auxiliary variables. Additionally, PYQ com-

pilation was observed to be faster than that of DBC. 

Embedding 

 

Quantum Processing Unit (QPU) 

The D-Wave 2000Q QPU hardware graph consists of 2048 qubits 

arranged in a 16x16 grid of complete bipartite K(4,4) unit cells. In 

this architecture, qubits have a maximum connectivity of six. 

 

Graph Minor 

In order to utilize QA, a mapping of variables to qubits must be 

found such that the QUBO is a graph minor of the QPU hardware 

graph. Due to the limited connectivity of the QPU, multiple 

physical qubits  may need to be chained together into one logi-

cal qubit to increase connectivity. 

 

 

 

 

 

D-Wave provides minorminer, a heuristic tool for finding embed-

dings. Owing to its heuristic nature, embeddings with varying 

chain lengths and total qubit usage will be found; however, the 

algorithm also can fail and return no embedding. Generally, 

smaller embeddings and chains are preferred to their larger 

counterparts which suffer from early freezeout; the time in the 

anneal after which qubit values cease to change. 

 

 

 

 

 

 

 

The above figures visualize the observed distributions of embed-

dings for a small and large JSP instance as well as the projected 

frequency if no embedding failures occurred. 

 

For a small instance, there are not many embedding failures and 

the range of embedding sizes is small compared to larger in-

stances. The DBC formulation of the larger instance has a wider 

range of embedding sizes and suffers from a 83% failure rate 

despite the mean embedding size taking up 73% of the QPU. 

The above figure shows that 

embedding time increases 

with problem size. Combined 

with a high variance, large 

problems are subject to long 

delays and unpredictable em-

bedding time.  

 

Summary 

• Embedding size and time grow with the number of variables in 

a QUBO. 

• QUBOs with many variables can experience high embedding 

failure rates. 

• High variable connectivity requires qubit chaining, which can 

also increase embedding failure rate. 
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Results 

 

Our performance metric is the percentage of valid schedules re-

turned from the annealer. A valid schedule breaks no constraints. 

 

 

 

 

 

 

 

 

This figure shows a negative correlation between embedding 

size and the percentage of valid schedules. This indicates that the 

embeddings with the highest performance are found in the low-

er tail of the distribution of embeddings from minorminer. 

Two main factors are responsible for this decreasing trend: 

• Chain breaks 

• Early freezeout 

 

 

 

 

 

 

 

 

 

This figure shows the results for instances with increasing T val-

ues. In general, performance decreases as problem complexity 

increases.  

 

 

 

 

 

 

 

The results from the unembedding methods are shown in the 

figure above. This clearly demonstrates that the minimize energy 

method consistently results in more valid schedules than majori-

ty vote method. 
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