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What Is DLRM?

Overview of DLRM:
I One of the most important Machine Learning / Deep

Learning workload of the Super-7 (Facebook, Google,
Microsoft, Amazon, Baidu, Alibaba and Tencent) are
recommender systems (RecSys)

I They are used to make suggestions of various kinds to the
user of various services offered by the Super-7

I There are various topologies used for RecSys, but the
industry does not have a standard benchmark which can be
scaled up and down to test and compare platforms

I DLRM [1,3] is an effort started by Facebook to define the
”ResNet50” of RecSys

I DLRM is benchmark topology which is inspired by
Facebook’s production workloads and it can be adjusted for
different problem sizes - perfect for benchmarking

The DLRM Topology
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Figure 1: Schematic of the DLRM topology. It comprises of MLPs and
Embedding table look-ups and the corresponding interaction operations.
Thus, it stresses all important aspects of the underlying hardware platform at
the same time: compute capabilities, network bandwidth, memory capacity
and memory bandwidth. This is rather unusual for classic HPC applications.

I DLRM has 3 major components: a) collection of dense and
sparse features, b) combination/interaction of the
processed features c) a classic dense model (neural net)

I Sparse features are processed by a so called embedding
table. We can think of an embedding as multi-hot encoded
look-ups into an embedding table W ∈ RMxE , with M
denoting the entries and E the length of each entry. This
approximates the well-known matrix factorization. This
kernel is heavily memory capacity and memory bandwidth
bound for random but full cache line accesses.

I The interaction is a relatively simple copy and/or
dot-product kernel which stresses the interconnect between
cores/sockets and is therefore bandwidth bound.

I The bottom and top Multi-Layer-Perceptrons (MLP) are
well-known deep learning constructs: fully-connected layers
with ReLU as activation-functions. This kernel is in general
compute-bound as it is matrix multiplication heavy.

Unlike classic HPC applications or benchmarks which are
either compute-bound (HPL, quantum chemistry,
higher0order finite elements) or bandwidth-bound
(stencils, sparse matrix vector multiplication, graph
analytics), DLRM stress all components of the computing
platform in a single application:

I memory capacity
I memory bandwidth
I random cacheline accesses
I interconnect bandwidth
I floating point operation density

Why Are CPUs Preferred For DLRM?

In this poster we focus on CPU-based optimizations for DLRM
for the following reasons:
X CPUs offer very high memory capacity per socket
X CPUs are a well-balanced platform which is needed for a

workload which stresses all aspects of the platform
X Large SMPs (up to 8 sockets) and a lot of interconnect

bandwidth allows efficient scaling
X Therefore, we can make sure that neither the embedding

look-up nor the MLP become a bottleneck

Optimization of DLRM - Software Setup

I pyTorch: version 1.15 + Intel pyTorch Extension; compiled
using gcc 8.3.0, [5]

I LIBXSMM: version 1.14; compiled with gcc version 8.3.0,
[2,6]

I MKL-DNN: version 1.2; compiled with gcc version 8.3.0, [4]
I oneCCL: version 1.0: oneAPI collective communction

library

Experimental Setup

All the experiments and measurements are conducted on
following hardware platforms using FP32 as numeric format:
I A 32 node cluster, with dual-socket nodes featuring the Intel

Xeon Platinum 8280 CPU with 28 cores@2.5GHz. Each
socket has its private 100G Intel OPA network card and we
use a 2:1 pruned tree as topology.

We use the following benchmark configuration in this work:
Configuration Parameter Small Large MLPerf

Minibatch 1s (N) 2048 - 2048
Global Minibatch (GN) 8192 16384 16384
Local Minibatch (LN) 1024 512 2048

Avg. look-ups per Table (P) 50 100 1
Number of Tables (S) 8 64 26

Embedding Dimension (E) 64 256 128
Avg. #rows per table (M) 1 · 106 6 · 106 up to 40M

Length Inputs Bottom MLP 512 2048 13
#Layers Bottom MLP 2 8 3

Bottom MLP Size 512 2048 512-256-182
#Layers Top MLP 4 16 5
Bottom MLP Size 1024 4096 2x1024-512-256-1

Embedding Look-Up Optimizations

In general the sparse reads and writes from and to the
embedding tables are random memory accesses. However, at
each random position in memory we read several cachelines
(E · sizeof(E)). Therefore, we achieve close to stream
bandwidth, when applying these optimizations:
I EmbeddingBag forward: By parallelizing and vectorizing the

lookup over the offsets we achieve about 8× of vanilla
pyTorch

I Sparse EmbeddingBag weight update: We avoid doing
sequential coalescing and parallelize this operation by
using fine-grained locks, the CPU’s restricted transactional
memory (rtm) extensions or a race free implementation.
This results in a 100× improvement over the baseline
implementation.

MLP Optimizations

Compared to the embedding, the MLP is pretty straight
forward:
I its main ingredient is matrix multiplication that is optimized

by our small GEMM library
I Bias addition and activation function (ReLU) are fused.
I we integrated oneCCL to overlap the AllReduce of weights

in the backward pass of the MLP, as the MLP is run in data
parallel fashion when using multiple sockets

Single Socket Absolute Performance
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Figure 2: Detailed DLRM performance single socket improvements.
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Figure 3: Detailed DLRM performance single socket timing breakdown.

Fig.2 and Fig. 3 depict that we can achieve between 8-110x
speed-up over vanilla pyTorch using our pyTorch
optimizations. MLP and Embedding phase are then fairly
balanced for the small configuration while MLPerf is
Embedding-bound.

Single Socket Efficiency – Scaling Baseline
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Figure 4: Single Socket FLOPS and Bandwidth Efficiency.

Fig. 4 depicts the hardware utilization:
I we achieve 70+% bandwidth peak and 50 % FLOPS peak

for the small config (and therefore for large as well) .
I we achieve 40+% bandwdith peak (lower due to real-life

skewed table sizes) and 50 % FLOPS peak for the MLPerf
config.

Cluster Scaling Performance - 64 sockets
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Figure 5: Strong-scaling efficiency of the three DLRM configurations.
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Figure 6: Weak-scaling efficiency of the three DLRM configurations.
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Figure 7: Weak scaling (local and per-socket minibatch is 512) of the large
problem on the 64-socket cluster.

Fig. 5, Fig. 6 and Fig. 7 depict the scaling efficiency of Fig. 4
single socket performance on up to 64 sockets (one Intel OPA
adapter per socket) using different communication back-ends
(classic MPI and Intel oneCCL). We make following
observations:
I oneCCL performance is clearly superior due to much better

overlapping and therefore less exposed communication
time.

I between 40%-60% strong-scaling efficiency when scaling
to max. socket count per config.

I excellent weak-scaling efficiency (≈80%) when scaling to
max. socket count per config.

Summary, Conclusion & Future Work

On this poster we demonstrated:
I how HPC methodologies can be used to significantly

speed-up training different DLRM variants
I how Cascade Lake CPUs can achieve a performance boost

of two orders of magnitudes on a single socket using
pyTorch

I how DRLM training be efficiently strong- and weak-scaled
on a 64-socket cluster using pyTorch

Future work is focused on BFLOAT16 optimizations on Intel
Cooper Lake Xeon CPUs
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