
• A loop containing many cyclic data dependencies (cj) needs several renaming techniques (Ri ).
• Finding an optimal combination of Ris is a Set Cover Problem (SCP) [1].

Ø To break all cyclic data dependencies (1) and to minimize runtime overhead (2).
Ø It is NP-complete. Computational time increases rapidly with the number of cyclic data dependencies.

If an optimal combination instead of suboptimal ones, can be obtained within a practical time, 
compilers would perform better vectorization leading to higher performance.

Find an optimal combination of Ri s by using quantum annealing (QA), an emerging technology to solve combinatorial optimization problems.
• Model the SCP problem by PolySIMD [2], and solve the problem using QA.

Ø A C source code as input, and an optimal combination of Ris as output.
Ø Need to convert SCP and its constraint to a QUBO (Quadratic Unconstrained Binary Optimization) problem, which D-Wave can process.

Evaluation

Processor trends Vectorization 

• Assuming offload to QA, we can implement compiler optimization without considering the number of cyclic dependencies. 
• QA is promising not only to replace a combinatorial optimization part of HPC application execution 

but also to help automatic compiler optimization and hereby improve the performance even on conventional HPC applications.
• Future Work : We will discuss how to reduce the embedding time, which accounts for a large proportion of the total execution.

Precompute and store embeddings to reduce embedding time to hashing and lookup.
Ø Small QUBOs with 64 variables or less can be embedded as complete graphs, but this method is inefficient and not applicable to large problems.
Ø Need to introduce parameters other than the number of variables.

Input a loop containing eight dependency cycles (Fig. 2).
・The optimal solution is verified by matching the result with that of CBC, an exact solver.

Ø Break all cycles (Fig. 3).
Ø Execution time is was reduced by 21 % (Fig .1).

• Most modern processors support vector processing or similar techniques to improve performance.
• Compilers perform automatic loop vectorization after checking if the loop is safely vectorizable.

Ø Programmers sometimes need to manually optimize a loop to help compiler.
Ø When there is a cyclic data dependency in a loop, variable renaming is required to break it.
Ø There are several kinds of variable renaming techniques for optimization, 

and the performance after vectorization depends on the techniques.
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Conclusion and Future Work

Processing time related to problem size
Solve SCP instances with Ri and cj for i=1,...N.
• Solution time of CBC increases sharply in N > 50.
• QA preprocessing time (Generate QUBO and 

Embedding) also increases with N.

• Solution time of QA is not affected by N 
and constant for the number of reads．
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Formulation

Loop analysis and formulation as weighted SCP by PolySIMD [2].
・Adopt two types of Ri having different runtime overheads.
Convert problem to QUBO using a penalty function.
・QUBO must not contain constraint expression (1).

Generate QUBO matrix Embedding
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Qubits on D-Wave have a chimera structure (middle).
・To embed QUBO having 3-loop(left), copy same

variable to several qubits, creating “chain”(right).
Finding embedding is harder for a larger QUBO matrix.
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Processing time compared with CBC
• QA requires a longer time for this instance.
• Embedding is time-consuming.

* Only QA needs to generate QUBO and embedding.
* QA solution time is measured from D-Wave machine time, 

not including communication time.
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(1)

If QA can process larger problems in the future, our proposal method may be able to 
solve SCP faster than the existing methods using only classical machines.
Ø We need to reduce the overhead of preprocessing as problem size increases.

Setup and Tools QA solver DW_2000Q_6
QUBO generation tool PyQUBO[3]
Embedding tool minorminer
Number of reads qubit num_reads = 100

Processor Intel Core i7-9700K
Memory 32GB
MIP solver (for comparison) CBC[4]

Experimental results demonstrate the feasibility of QA
to assist automatic loop vectorization by compilers

Nodes denote statements and 
edges denote dependencies
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