
• A loop containing many cyclic data dependencies (cj) needs several renaming techniques (Ri).
• Finding an optimal combination of Ris is a Set Cover Problem (SCP) [1].

Ø To break all cyclic data dependencies (1) and to minimize runtime overhead (2).
Ø It is NP-complete. Computational time increases rapidly with the number of cyclic data dependencies.

If an optimal combination instead of suboptimal ones, can be obtained within a practical time,
compilers would perform better vectorization leading to higher performance.

Find an optimal combination of Ri s by using quantum annealing (QA), an emerging technology to solve combinatorial optimization problems.
• Model the SCP problem by PolySIMD [2], and solve the problem using QA.

Ø A C source code as input, and an optimal combination of Ris as output.
Ø Need to convert SCP and its constraint to a QUBO (Quadratic Unconstrained Binary Optimization) problem, which D-Wave can process.

Evaluation

Processor trends Vectorization

• Assuming offload to QA, we can implement compiler optimization without considering the number of cyclic dependencies.
• QA is promising not only to replace a combinatorial optimization part of HPC application execution

but also to help automatic compiler optimization and hereby improve the performance even on conventional HPC applications.
• Future Work : We will discuss how to reduce the embedding time, which accounts for a large proportion of the total execution.

Precompute and store embeddings to reduce embedding time to hashing and lookup.
Ø Small QUBOs with 64 variables or less can be embedded as complete graphs, but this method is inefficient and not applicable to large problems.
Ø Need to introduce parameters other than the number of variables.

Input a loop containing eight dependency cycles (Fig. 2).
・The optimal solution is verified by matching the result with that of CBC, an exact solver.

Ø Break all cycles (Fig. 3).
Ø Execution time is was reduced by 21 % (Fig .1).

• Most modern processors support vector processing or similar techniques to improve performance.
• Compilers perform automatic loop vectorization after checking if the loop is safely vectorizable.

Ø Programmers sometimes need to manually optimize a loop to help compiler.
Ø When there is a cyclic data dependency in a loop, variable renaming is required to break it.
Ø There are several kinds of variable renaming techniques for optimization,

and the performance after vectorization depends on the techniques.

[1]Pierre-Yves Calland, Alain Darte, Yves Robert, and Frédéric Vivien. On the removal of anti-and output-dependences. International Journal of Parallel Programming, 26(3):285–312, 1998.
[2]Prasanth Chatarasi, Jun Shirako, Albert Cohen, and Vivek Sarkar. A unified approach to variable renaming for enhanced vectorization.

In International Workshop on Languages and Compilers for Parallel Computing, pages 1–20. Springer, 2018.
[3] Kotaro Tanahashi. Pyqubo. https://github.com/recruit-communications/pyqubo.
[4] Saltzman, Matthew J. "COIN-OR: an open-source library for optimization." Programming languages and systems in computational economics and finance. Springer, Boston, MA, 2002. 3-32.

References

Proposal – Quantum Annealing for Compiler Support –

Conclusion and Future Work

Processing time related to problem size
Solve SCP instances with Ri and cj for i=1,...N.
• Solution time of CBC increases sharply in N > 50.
• QA preprocessing time (Generate QUBO and

Embedding) also increases with N.

• Solution time of QA is not affected by N
and constant for the number of reads．

Fig.2 Original Loop Fig.3 Renamed Loop

0 0.2 0.4 0.6 0.8 1

Original Loop

Vectorized with
optimal renaming

Vectorized with
non-optimal renaming

Execution Time [sec/10,000 iterations]
Fig.1 Speed up by vectorization

Input:
C source code

Loop analysis &
modeling as SCP

Reduced by 21%

U
R1 R2

R3

R4

c1 c2 c3

cj∈ Ri : Ri can break cj

Formulation

Loop analysis and formulation as weighted SCP by PolySIMD [2].
・Adopt two types of Ri having different runtime overheads.
Convert problem to QUBO using a penalty function.
・QUBO must not contain constraint expression (1).

Generate QUBO matrix Embedding

x2 x3

x1

Qubits on D-Wave have a chimera structure (middle).
・To embed QUBO having 3-loop(left), copy same

variable to several qubits, creating “chain”(right).
Finding embedding is harder for a larger QUBO matrix.

x3

x1

x2

x1

Output: the optimal
combination of Ris

(URL) https://www.sc.cc.tohoku.ac.jp
(E-mail) yuta.sasaki.p4@dc.tohoku.ac.jp

D-Wave
2000Q

Solution

https://www.dwavesys.com/

Processing time compared with CBC
• QA requires a longer time for this instance.
• Embedding is time-consuming.

* Only QA needs to generate QUBO and embedding.
* QA solution time is measured from D-Wave machine time,

not including communication time.

(2)

(1)

If QA can process larger problems in the future, our proposal method may be able to
solve SCP faster than the existing methods using only classical machines.
Ø We need to reduce the overhead of preprocessing as problem size increases.

Setup and Tools QA solver DW_2000Q_6
QUBO generation tool PyQUBO[3]
Embedding tool minorminer
Number of reads qubit num_reads = 100

Processor Intel Core i7-9700K
Memory 32GB
MIP solver (for comparison) CBC[4]

Experimental results demonstrate the feasibility of QA
to assist automatic loop vectorization by compilers

Nodes denote statements and
edges denote dependencies

Background

Acknowledgement

Problem – Combinatorial Optimization for Vectorization –

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Pr
oc

es
sin

g
Ti

m
e[

m
se

c]

N

Solution(CBC) Generate QUBO Embedding Solution(QA, num_reads=100)

0 20 40 60 80 100 120 140

CBC

QA

Processing Time [msec]

Loop Analysis Formulation

QUBO Generation /
Conversion for CBC

Embedding

Solution

The authors are grateful to Prasanth Chatarasi and Vivek Sarkar for willing to contribute the source code for PolySIMD, their tool
to extend vectorization technologies. Their study motivates our proposed method and is very helpful in its implementation.

This work is partially supported by MEXT Next Generation High-Performance Computing Infrastructures and Applications R&D Program “R&D of A Quantum-Annealing-Assisted
Next Generation HPC Infrastructure and its Applications,” Grant-in-Aid for Scientific Research(B) #16H02822 and #17H01706.

