

Optimizations for the Himeno Benchmark on Vector Computing System SX-Aurora TSUBASA

Akito Onodera¹⁾, Kazuhiko Komatsu¹⁾, Takumi Kishitani¹⁾²⁾, Masayuki Sato¹⁾, Yoko Isobe²⁾, Hiroaki Kobayashi¹⁾ 1)Tohoku University, 2)NEC Corporation

Background

Importance of Vector Processing

- Modern processors improve computational performance by vector processing
 - NEC SX-Aurora TSUBASA, Intel Skylake, Fujitsu A64FX, etc.
- Many applications involve data-level parallelism best suited for vector processing
 - Large-scale numerical simulations, big data analysis, etc.
- → The use of vector processing is necessary for accelerating applications

Vector Computing System SX-Aurora TSUBASA

- Composed of Vector Hosts (VHs) and Vector Engines (VEs) [1]
 - VH: Standard x86 processor that is responsible for executions of OS-related tasks
 - VE: NEC-developed processor that accelerates computing kernels
- Applications are executed on VEs
 - VEs request VHs to execute applications only when them need system calls

System Overview of A300-8

- 2 VHs and 8 VEs
- One VH and 8 VEs are connected
- by PCI Express via 2 PCIe switches
- VEs are connected by Infiniband (IB) for MPI processing

O Architecture of the VE

- 8-vector cores
- Vector registers for 256-elements data
- → Need to utilize the multiple cores and the long vector length
- A high bandwidth Last-Level Cache (LLC)
- → Need to utilize the LLC bandwidth
- A main memory by 6 modules of High Bandwidth Memory (HBM2)
- → Need to utilize the main memory bandwidth

Exploitation of the potentials of SX-Aurora TSUBASA by using the Himeno benchmark

ptimizations for the Himeno Benchmark

Overview of the Himeno Benchmark

- The benchmark solves Poisson's equation using the Jacobi iteration method [2]
- The Jacobi iteration method in this benchmark
 - 19-point stencil calculation nested by i, j, and k
 - ✓ The memory-intensive kernel (Code B/F: 3.74)

Three Optimizations for VE

1 Store highly reusable data in the LLC

- Utilize the LLC whose bandwidth is higher than that of HBM2
- An array of the pressure variables is referenced 19 times per iteration
 - Force to place the array in the LLC using compiler directive

2 Reduce the loop overheads

- Apply loop unrolling using compiler directive "outerloop unroll"
 - Long loops with nested structures in the kernel
 - Use of plenty of vector registers of vector processors
 - Set the unroll time as large as possible without register spilling

3 Tune the domain decomposition parameters

- Important for efficient vector processing
 - Longer vector length
 - Higher LLC hit ratio
- ☐ Keeping the length in the k direction larger than 256, while
- ☐ Increasing the decomposition of the i direction compared with i direction to achieve the high LLC hit ratio

Performance Evaluation

Experimental Environment

- SX-Aurora TSUBASA A300-8
 - VH: Intel Xeon Gold 6126 x 2
 - Peak performance / socket: 1.0 TFLOPS
 - Peak memory bandwidth: 0.13 TB/s
- - Peak performance / node: 2.15 TFLOPS Peak memory bandwidth / node: 1.2 TB/s
 - Peak LLC bandwidth / node: 3.2 TB/s
 - Infiniband FDR

- CentOS 7.5.1804
- **VEOS 2.4.0**
- NEC C/C++ Compiler 3.0.1
- **NEC MPI 2.5.0**
- Himeno benchmark version 3.0 C language
 - MPI static allocate version
- Problem size: XL (512x512x1024)
- Initial decomposition: (i,j,k)=(2,2,2)

The performance improves as each optimization is applied

- The LLC hit ratio increases from 44.3% to 49.6%
- The loop overhead decreases greatly by loop unrolling The average vector length is 255.18 by tuning the decomposition
- 1.15x performance improvement compared with that of OpenMP version [3]
- 7.7% of the peak performance in the MPI version

SX-Aurora TSUBASA achieves the highest performance

Utilize HBM2 and LLC bandwidth efficiently

- **Good scalability**
 - 48.9x speedup and 76% parallel efficiency with 64 processes
- 6.5% of the peak performance with 8VEs

Future Work

accelerated by introducing hybrid execution with VHs and VEs

- SX-Aurora TSUBASA has achieved high performance of the Himeno benchmark by the optimizations
 - Important to execute efficient vector processing with effective use of hardware resources The sustained performance of the Himeno benchmark on SX-Aurora TSUBASA can be further

References
[1] Y. Tamada et al., "Vector Engine Processor of NEC 's Brand-Supercomputer SK-Aurora TSUBASA", Hot Chips 30, Aug 2018
[2] Himmen benchmark,
http://lirken.jp.ens/upercom/documents/himenobmt//
[3] K. Komatsu et al., "Performance Evaluation of a Vector Supercomputer SK-Aurora TSUBASA', SCLS, Nov 2018