
Software Defined Application Infrastructures
Management and Engineering
Feb 2019 to Jan 2022

Vision

Architecture

SODALITE IDE

Status

Simpler and faster development, deployment,
operation and execution of heterogeneous apps in HPC,
Cloud & SW-defined computing environments.

A pattern-based abstraction library that includes application,
infrastructure, and performance abstractions.
An automatic Infrastructure as Code (IaC) engine that
facilitates the development process, and also reduces deploying
errors.
A design and programming model for applications and
infrastructures based on the abstraction library.
A deployment framework that enables the static
optimization of abstracted applications onto specific
infrastructure.
Automated static and run-time optimization and
management of applications.

SODALITE allows the Application Ops Expert (AoE) to model
the deployment of an optimised application on an
infrastructure target using predefined application,
infrastructure and performance abstractions (SODALITE
IDE).
The models created by the AoE are automatically
translated into infrastructural code, which is then
translated to an optimised deployment using state of the art
container technologies (MODAK).
This optimized application is then deployed by an
orchestrator on multiple diverse computing platforms.
Deployment to clusters and supercomputers with
homogeneous or heterogeneous node architectures for
heavy batch computations, including resources
available on the Cloud and Edge devices, is supported.

Run Time: 3-year project, started in February 2019.
Current Status: Design and development of the alpha
prototype of MODAK and SODALITE framework.
Next Steps: Integrating MODAK with the SODALITE framework
and demonstrating with GPU Snow and Insilico clinical trails use
case.

Performance Requirements

MODAK Architecture

Comparison of AI Frameworks

Simpifly & fully exploit benefits
of heterogeneous platforms

Vehicle IoT
Problem: Changing compliance, privacy, and
security needs in a dynamic environment,
combined with limited computational
capacity at the network Edge.
Solution: Adaptive Application and
Deployment Reconfiguration, leveraging
heterogeneous compute resources in a
multi-cloud (Cloud-to-Edge) environment.

In-silico Clinical Trials
Problem: Production-ready, complex
workflow, needs to be capable to
efficently run anywhere.
Solution: Deployment optimisation,
heterogeneity support and deployment
reconfiguration - enabling to target any
infrastructure.

Use Cases

GPU Snow
Problem: Need for a reconfigurable
workflow (CPU/GPU/IO bound), to be
deployed anywhere and optimised for
that infrastructure.
Solution: Optimisation and
reconfiguration improve potential
prediction accuracy due to improved
throughput of data.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825480. Privacy policy

Karthee Sivalingam (CRAY-HPE), Alfio Lazzaro (CRAY-HPE), Nina Mujkanovic (CRAY-HPE), Daniel Vladušič (XLAB),
Joao Pita Costa (XLAB) Maria Carbonell (ATOS) and Yosu Gorroñogoitia (ATOS)

www.sodalite.eu@SODALITESW @SODALITE.EU projectinfo@sodalite.eu

Heterogenous Infrastructure (HPC/Cloud)

COMPUTE STORAGE NETWORK SCHEDULER

CPU
GPU
FPGA

LUSTRE
SSD
Object Store

Ethernet
InfiniBand
PCIe

Torque/Slurm
Kubernetes
OpenStack

Containers

Optimisation

Models

Deployment

APP

SODALITE attempts to bring the vast knowledge of performance optimisation
accrued by the HPC industry over decades into the cloud computing area.

Deployed in

AI Example

Da
ta

 S
ci

en
�s

t (
Ao

E)

Data

Configuration

Optimisation
MKL DNN

SODALITE IDE Infrastructure as a Code Infrastructure
AI
Frameworks

Library
& Compiler

XLA

Inputs

High level API

Containers/
Orchestration

High Level API

HPC
MPI

OpenMP
Application

Inputs

Input
Configuration

Model
Repository

MODAK
Application Optimiser

Image
Registry

Infrastructure
Performance

Model

Application
Performance

Model

Optimisation
Recipe

Container

Job scripts

MODAK focuses on supporting three
major application types for static
optimisation: AI training/Inference,
Big Data Analytics and Traditional HPC

The performance models are
developed by running standard
bechmarks across different
configurations and then building a
simple linear statistical model.

Singularity, for HPC Build
system, custom format for
images (SIF)
Can use Docker images
Rootless installation

AI Training
Inference

Big Data
Analytics

MODAK, a model-based application deployment optimiser enables static optimisation.
An application’s performance can be predicted using the performance models of the application and infrastructure.
These model will inform how the application parameters (like input data size and format) influence the performance and also the
performance characteristics of the target infrastructure, such as peak performance and memory bandwidth.
Based on AoE selected optimisations (Optimisation recipe), MODAK maps the optimal application parameters to the
infrastructure target and builds an optimised container (using prebuilt images from the image registry).

AI example shows how
the data scientist will use
the SODALITE framework
by specifying the data,
config and optimisations
options while deploying
an AI network written in a
highlevel API. The
SODALITE application
optimiser will select a
preferred AI framework,
optimised library and
compiler and then build
an optimised container.
This will then be deployed
to an HPC or Cloud
nfrastructure.

396

180

389

301

1483

PyTorch TF2.1 TF1.4 MXNet CNTK

W
al

l c
lo

ck
 t

im
e

396

Performance of AI frameworks in
singularity containers built from source

MNIST CNN training workload
in CPU only

ResNet50 workload in GPU. MNIST CNN training workload
in CPU only

ResNet50 in GPU

Performance of AI frameworks in singularity
containers with Graph compilers

Performance of different AI
frameworks (in singularity
container) for a MNIST CNN training
workload in CPU only

6821

6698

6798

6698

60996663

TF2.1-src TF2.1-src+XLA

164

247
232

164

TF2.1-src TF2.1-src+XLA TF1.4 TF1.4+NGRAPH

171 164

396

329

TF2.1 TF2.1-src PyTorch PyTorch-src TF2.1 TF2.1-src PyTorch PyTorch-src

