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Vision

Architecture

SODALITE IDE

Status

Simpler and faster development, deployment,
operation and execution of heterogeneous apps in HPC, 
Cloud & SW-defined computing environments.

A pattern-based abstraction library that includes application, 
infrastructure, and performance abstractions.
An automatic Infrastructure as Code (IaC) engine that 
facilitates the development process, and also reduces deploying 
errors.
A design and programming model for applications and 
infrastructures based on the abstraction library.
A deployment framework that enables the static
optimization of abstracted applications onto specific 
infrastructure.
Automated static and run-time optimization and
management of applications.

SODALITE allows the Application Ops Expert (AoE) to model 
the deployment of an optimised application on an 
infrastructure target using predefined application, 
infrastructure and performance abstractions (SODALITE 
IDE).
The models created by the AoE are automatically
translated into infrastructural code, which is then
translated to an optimised deployment using state of the art 
container technologies (MODAK).
This optimized application is then deployed by an
orchestrator on multiple diverse computing platforms.
Deployment to clusters and supercomputers with
homogeneous or heterogeneous node architectures for 
heavy batch computations, including resources
available on the Cloud and Edge devices, is supported.

Run Time: 3-year project, started in February 2019.
Current Status: Design and development of the alpha 
prototype of MODAK and SODALITE framework. 
Next Steps: Integrating MODAK with the SODALITE framework 
and demonstrating with GPU Snow and Insilico clinical trails use 
case.

Performance Requirements

MODAK Architecture

Comparison of AI Frameworks

Simpifly & fully exploit benefits
of heterogeneous platforms

Vehicle IoT 
Problem: Changing compliance, privacy, and 
security needs in a dynamic environment, 
combined with limited computational 
capacity at the network Edge. 
Solution: Adaptive Application and 
Deployment Reconfiguration, leveraging 
heterogeneous compute resources in a 
multi-cloud (Cloud-to-Edge) environment.

In-silico Clinical Trials 
Problem: Production-ready, complex 
workflow, needs to be capable to 
efficently run anywhere. 
Solution: Deployment optimisation, 
heterogeneity support and deployment 
reconfiguration - enabling to target any 
infrastructure.

Use Cases

GPU Snow 
Problem: Need for a reconfigurable 
workflow (CPU/GPU/IO bound), to be 
deployed anywhere and optimised for 
that infrastructure. 
Solution: Optimisation and 
reconfiguration improve potential 
prediction accuracy due to improved 
throughput of data.
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Heterogenous Infrastructure (HPC/Cloud)
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SODALITE attempts to bring the vast knowledge of performance optimisation
accrued by the HPC industry over decades into the cloud computing area.
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MODAK focuses on supporting three
major application types for static
optimisation: AI training/Inference, 
Big Data Analytics and Traditional HPC

The performance models are 
developed by running standard 
bechmarks across different 
configurations and then building a 
simple linear statistical model.

Singularity, for HPC Build 
system, custom format for 
images (SIF)
Can use Docker images
Rootless installation

AI Training
Inference

Big Data
Analytics

MODAK, a model-based application deployment optimiser enables static optimisation.
An application’s performance can be predicted using the performance models of the application and infrastructure.
These model will inform how the application parameters (like input data size and format) influence the performance and also the 
performance characteristics of the target infrastructure, such as peak performance and memory bandwidth.
Based on AoE selected optimisations (Optimisation recipe), MODAK maps the optimal application parameters to the 
infrastructure target and builds an optimised container (using prebuilt images from the image registry).

AI example shows how 
the data scientist will use 
the SODALITE framework 
by specifying the data, 
config and optimisations 
options while deploying 
an AI network written in a 
highlevel API. The 
SODALITE application 
optimiser will select a 
preferred AI framework, 
optimised library and 
compiler and then build 
an optimised container. 
This will then be deployed 
to an HPC or Cloud 
nfrastructure.
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Performance of AI frameworks in 
singularity containers built from source

MNIST CNN training workload 
in CPU only

ResNet50 workload in GPU. MNIST CNN training workload 
in CPU only

ResNet50 in GPU

Performance of AI frameworks in singularity 
containers with Graph compilers

Performance of different AI 
frameworks (in singularity 
container) for a MNIST CNN training 
workload in CPU only
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