

European co-design for exascale applications

The Horizon 2020 EuroEXA project proposes a ground-breaking design for mind-blowing results: Over four times higher performance and four times higher energy efficiency than today's High-Performance platforms. The goal of the project is develop a Xilinx FPGA board running at several TFlop/s, liquid cool and connect a few hundred and interconnect them to create a few PFlop/s cluster.

Vision

• First testbed architecture will be shown to be capable of scaling to world-class peak performance in excess of 400 PFLOPS with an estimated system power of around 30 MW peak.

• A compute-centric 250 PFLOPS per 15 MW by 2019.

• Show that an exascale machine could be built in 2020 within 30 shipping containers with an edge to edge distance of less than 40m.

Who are the partners?			Architecture					
Institute of Communication and Computer Systems ARM	The Barcelona Supercomputing Center The European Centre for Medium-Range Weather		Applications Input datasets Number of nodes	Application experts ICCS, ECMWF, Neurasmus, BSC, INFN, INAF, STFC, IMEC, Synelixis	Understanding of target markets and path to commercialization Industrial partners ZeroPoint Maxeler ABM	System arch experts U. Manchester, BSC, FORTH, Maxeler	Balance app and system SW requirements with energy-efficiency and resiliency	
Fraunnoter Iceotope Technologies Limited IMEC VZW	Forecasts The Foundation for Research and Technology – HELLAS	I	requirements into hardware-level requirements	System SW and prog. env experts BSC, FORTH, Fraunhofer, Maxeler	Synelixis, Neurasmus	Hardware experts FORTH, INFN, Maxeler	Determine parameters of low-level hardware blocks	

Maxeler Neurasmus BV Synelixis Solutions S.A

The Italian National Institute for Astrophysics The Italian National Institute for Nuclear Physics The Science and Technology Facilities Council University of Manchester Zeropoint Technologies

Trifecta Scalable I/O

As node count increases, homogeneous interconnects suffer untenable pressure on the per-node interconnect radix or suffer from multi-hop latencies, longer cables, and increased communication energy requirements. EuroEXA uses the Trifacta Scalable Interconnect, a proximity optimized interconnect providing data and communication locality between various levels Cabinet to Cabinet Over Commodity of hierarchy of peers.

• T1

Direct Node to Node Interconnect in groups of 4 Nodes – 320Gb/s Per Node

• T2

Node to Blade Level FPGA Switch, in groups of 16 Nodes – 64Gb/s Per Node

• T3

Switches, Using SDN Openflow – 800Gb/s Per Blade

Applications

CRDB - FPGA heavy nodes

Scale out testbed

- Co-Design Influenced
- VU9P Xilinx FPGAs
- ARM CPU and FPGA for Networking and Storage
- 64GB RAM
- 500GB SSD
- 4x16Gb T2 Trifecta I/O
- 20x16Gb T1 Trifecta I/O

- Deployed Q3&Q4 2020
- 256 CRDB FPGA Heavy Nodes
- 256 New Processor Heavy Nodes
- 48V DC Distribution
- Shipping Container Data Centre Design
- Total Liquid Cooling
- Hot Water Out, Chillerless Design

© 2020 EuroEXA and Consortia Member Rights Holders This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 754337.