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Introduction
Motivation Approach
e Significant gap in communities: e Methods from scientific computing domain
Machine Learning (ML) <> high-performance computing (HPC) —“Undervalued” near-linear complexity methods (fast multipole methods)’
¢ ML needs considerable computing power — Adaptive sparse grids to mitigate curse of dimensionality?

— we need adequate software!
e ExaNIML.: Library with algorithms

e HPC: Exploit potential of supercomputers

— Concurrency: Choose suitable algorithms for parallel computing
—with modern applications from ML community — Extract computational bottlenecks as low-level drivers in C++ or Kokkos

—with enough concurrency for next generation distributed computing systems —Performance Portability in-light of the upcoming new GPU and CPU
architectures

Classification with Kernel Methods

Kernel Matrix Example: Binary classification Our approach: Kernel Matrix Approximation
Occurs in many domains ... Ridge regression e Often K is a dense N-by-N matrix; this quadratic
e multi-class classification e N data points z; € R? and N binary labels y; complexity often is the computational bottleneck
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Time for compression (left) and multiplication
4-process distributed H-Matrix compression. Mixed (right) for a 6-d gaussian kernel matrix of 64M-
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Dependency graph for asynchronous task analysis

Dimensionality Reduction Approximation with Sparse Grids
Sparse grids
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Embedded Space ? 8
z , X Classification on Embedded Space Sparse Grids in Embedded Space g
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Interfaces Conclusion

fhoccielt SG++ e Method design
MPI-GO . m I TensorFlow o — Run prominent models from current machine learning peers
Kernel Matrix Approxima- Deep Learning gp?rse.g.nd Ilblrt?]ry — Combine models with hierarchical kernel and sparse grid methods
tion - : . ata mining wi , ,

Manifold Learning ResNet, MobileNet,. .. Sparse grid density esti e Library design
mation — Community/reproducibility: ExaNIML library for others to play
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