Sparse

Grids

ExaNIML

An Exascale Library for Numerically Inspired Machine Learning

Severin Reiz[§], Hasan Ashraf[§], Tobias Neckel[§], George Biros[†], Hans-Joachim Bungartz[§]

Technical University of Munich, † University of Texas at Austin, reiz@in.tum.de, ashraf@in.tum.de, neckel@in.tum.de, gbiros@ices.utexas.edu, bungartz@in.tum.de

Introduction

Motivation

Kernel Matrix

- Significant gap in communities: Machine Learning (ML) ↔ high-performance computing (HPC)
- ML needs considerable computing power
- → we need adequate software!
- ExaNIML: Library with algorithms

Occurs in many domains . . .

multi-class classification

uncertainty quantification

partial differential equations

model-order reduction

- with modern applications from ML community
- with enough concurrency for next generation distributed computing systems

Approach

- Methods from scientific computing domain
- "Undervalued" near-linear complexity methods (fast multipole methods)¹
- Adaptive sparse grids to mitigate curse of dimensionality²
- **HPC:** Exploit potential of supercomputers
- Concurrency: Choose suitable algorithms for parallel computing
- Extract computational bottlenecks as low-level drivers in C++ or Kokkos
- Performance Portability in-light of the upcoming new GPU and CPU architectures

Classification with Kernel Methods

Example: Binary classification

Ridge regression

- ullet N data points $x_i \in \mathbb{R}^d$ and N binary labels y_i
- $\bullet \ f(x) = \mathrm{sign}(\sum_{i=1}^N k(x,x_i)w_i) \rightarrow u = f(x_{test}) = K*w$
- Solving a linear system: kernel matrix K often not stable, nearly singular. Solve $K \to K + \lambda I$ instead

Our approach: Kernel Matrix Approximation

- Often K is a dense N-by-N matrix; this quadratic complexity often is the computational bottleneck
- To reach $\mathcal{O}(N)$ algorithms it requires approximation
- For the majority of applications off-diagonal blocks of *K* admit good low-rank approximations

Many ML libraries offer Kernel methods: to our knowledge none of them offer kernel matrix approximation

Key Computational Bottlenecks

Geometry-oblivious Fast Multipole Method¹

- Hierarchically off-diagonal low-rank
- Speeds up algebraic operations

Dependency graph for asynchronous task analysis tributed nodes

4-process distributed \mathcal{H} -Matrix compression. Mixed colored sections and factors are shared for dis-

First scalability results

Multiplication¹

Time for compression (left) and multiplication Time for ULV-Factorization (left) and forward-(right) for a 6-d gaussian kernel matrix of 64Mby-64M

 $\mathcal{O}(N)$ linear solver³

solve (right)

Dimensionality Reduction

Reduce the dimensionality of dataset Manifold Learning Algorithms

- (Kernel) Principal Component Analysis
- Isomap algorithm
- Hessian local eigenmaps, ...

Classification on Embedded Space

- Example forced to 2D manifold (plotting)
- Classification on lower dimensional manifold
- → Sparse grid classification⁴

Approximation with Sparse Grids

Sparse grids

- Reduce number of grid points
- One approach: Combi-Technique Combine Full Grids (red and blue, c.f. figure on right)
- Suitable for 5-20 dimensions

Sparse Grids in Embedded Space

- 1. Manifold learning algorithm for coarse embedded space
- 2. Fine approximation in embedded space with **Sparse Grids**

Synergy between Point-based and Gridbased Methods

Interfaces

Sparse grid library Data mining with Sparse grid density estimation

Conclusion

- Method design
- Run prominent models from current machine learning peers
- Combine models with **hierarchical** kernel and **sparse grid** methods
- Library design
- Community/reproducibility: ExaNIML library for others to play

References